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Abstract. Let F be a totally real field with ring of integers OF , and D be a

totally definite quaternion algebra over F . A well-known formula established
by Eichler and then extended by Körner computes the class number of any

OF -order in D. In this paper we generalize the Eichler class number formula

so that it works for arbitrary Z-orders in D. Our motivation is to count the
isomorphism classes of supersingular abelian surfaces in a simple isogeny class

over a finite prime field Fp. We give explicit formulas for the number of these

isomorphism classes for all primes p.
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1. Introduction

Throughout this paper p denotes a prime number. Let D be the quaternion Q-
algebra ramified exactly at {p,∞}. For any supersingular elliptic curve X over F̄p,
its endomorphism algebra End0

F̄p
(X) := EndF̄p

(X) ⊗Z Q is isomorphic to D, and

the endomorphism ring EndF̄p
(X) is always a maximal order in D. The classical

theory of Deuring establishes a one-to-one correspondence between isomorphism
classes of supersingular elliptic curves over F̄p and ideal classes of a maximal order
OD ⊂ D. Moreover, there is an explicit formula for the class number h(OD) as
follows

(1.1) h(OD) =
p− 1

12
+

1

3

(
1−

(
−3

p

))
+

1

4

(
1−

(
−4

p

))
,

where
(
·
p

)
denotes the Legendre symbol. In (1.1), the main term (p− 1)/12 is the

mass for supersingular elliptic curves, which is also equal to ζQ(−1)(1 − p), where
ζQ(s) is the Riemann zeta function. The remaining terms are the adjustments for
the isomorphism classes with extra automorphisms. As the points corresponding
to these classes on the moduli space come from the reduction of elliptic fixed points
(whose j-invariants are 0 or 1728), the latter sum is also called the elliptic part.

The goal of this paper is to provide an explicit description and concrete formula
for the isomorphism classes inside certain isogeny class of supersingular abelian
surfaces. The main tools are the Honda-Tate theory and extended methods in
Eichler’s class number formula.

Suppose that q is a power of the prime number p. An algebraic integer π ∈ Q̄
is said to be a q-Weil number if |π| =√q for all embeddings of Q(π) into C. The
Honda-Tate theory [12, 28] establishes a bijection between isogeny classes of simple
abelian varieties over Fq and conjugacy classes q-Weil numbers. In [31], Waterhouse
developed a theory for studying the isomorphism classes and endomorphism rings
of abelian varieties within a fixed simple isogeny class. If π is a q-Weil number,
we denote by Xπ the abelian variety over Fq associated to π, unique up to isogeny.
For example, it is well known that every supersingular elliptic curve over F̄p admits
a model over Fp2 which lies inside the isogeny class Isog(Xπ) corresponding to
the p2-Weil number π = −p. Then (1.1) may be interpreted as a formula for the
number of isomorphism classes in this isogeny class. When q = p is a prime number,
Waterhouse has proven the following result [31, Theorem 6.1].

Theorem 1.1. Suppose that F = Q(π) is not a totally real field. Then

(1) The endomorphism algebra End0
Fp

(Xπ) = EndFp(Xπ) ⊗Z Q of Xπ is com-
mutative and coincides with F ;

(2) All orders in F containing R0 = Z[π, pπ−1] are endomorphism rings;
(3) There is a bijection between the set of R0-ideal classes and the Fp-isomorphism

classes of abelian varieties isogenous to Xπ.

In general there is no explicit description for R0-ideal classes. However, the set of
R0-ideals is divided into finitely many genera and each genus has h(R) ideal classes
for some order R containing R0, where h(R) := |Pic(R)| denotes the class number
of the order R. It is known that the class number h(R) of R is a multiple of the
class number h(F ) of F . As a consequence of Waterhouse’s result (Theorem 1.1)
the number of Fp-isomorphism classes in Isog(Xπ) is a multiple of the class number
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h(F ). Determining this multiple, nevertheless, requires an explicit description of
genera of R0-ideals.

The above is the general picture when F = Q(π) is not totally real for a p-
Weil number π. The exceptional case where F is totally real corresponds to the
unique conjugacy class of the Weil number π =

√
p , for which F = Q(

√
p ) is a

real quadratic field. It was already known to Tate [28, Section 1, Examples] that
Xπ in this case is a supersingular abelian surface whose endomorphism algebra
End0

Fp
(Xπ) is isomorphic to the quaternion algebra D∞1,∞2 over F ramified only

at the two real places of F . Different from the classical case of supersingular elliptic
curves treated by Deuring, Waterhouse [31, Theorem 6.2] showed that EndFp

(Xπ)
is not always a maximal order in D∞1,∞2 . A description of endomorphism rings of
these abelian surfaces will be given in Section 6.1. Our main result gives explicit
formulas for the number of Fp-isomorphism classes of this isogeny class.

Theorem 1.2. Let H(p) be the number of Fp-isomorphism classes of abelian vari-
eties in the simple isogeny class corresponding to the p-Weil number π =

√
p . Then

(1) H(p) = 1, 2, 3 for p = 2, 3, 5, respectively;
(2) For p > 5 and p ≡ 3 (mod 4), one has

(1.2) H(p) =
1

2
h(F )ζF (−1) +

(
3

8
+

5

8

(
2−

(
2

p

)))
h(K1) +

1

4
h(K2) +

1

3
h(K3),

where Kj := F (
√
−j ) for j = 1, 2, 3, and h(Kj) denotes the class number of Kj.

(3) For p > 5 and p ≡ 1 (mod 4), one has
(1.3)

H(p) =

{
8ζF (−1)h(F ) + h(K1) + 4

3h(K3) for p ≡ 1 (mod 8);(
45+$

2$

)
ζF (−1)h(F ) +

(
9+$
4$

)
h(K1) + 4

3h(K3) for p ≡ 5 (mod 8);

where $ := [O×F : A×] and A = Z[
√
p ] ( OF . The value of $ is either 1 or 3 by

Section 9.2.
The special value ζF (−1) of the Dedekind zeta-function ζF (s) in both (2) and (3)
can be calculated by Siegel’s formula (6.11).

To obtain Theorem 1.2, it is necessary to compute the class number of D∞1,∞2 .

Theorem 1.3. Let D = D∞1,∞2 be the quaternion algebra over F = Q(
√
p ) rami-

fied only at the two real places of F . The class number h(D) (i.e. the class number
of any maximal order in D) is given below:

(1) h(D) = 1, 2, 1 for p = 2, 3, 5, respectively;
(2) if p ≡ 1 (mod 4) and p 6= 5, h(D) = h(F )ζF (−1)/2 + h(K1)/4 + h(K3)/3;
(3) if p ≡ 3 (mod 4) and p 6= 3, then h(D) = H(p) and is given by (1.2).

Remark 1.4. By Section 7.10, for all p ≥ 5 and j ∈ {1, 2, 3}, we have h(Kj) =
νh(F )h(kj), where ν ∈ {1, 1/2} and kj := Q(

√
−pj ). Hence one may factor out

h(F ) in the results of Theorem 1.2 and 1.3. For example, we get

(1.4)
h(D)

h(F )
=
ζF (−1)

2
+
h(k1)

8
+
h(k3)

6

for p > 5 and p ≡ 1 (mod 4), and

(1.5)
h(D)

h(F )
=
ζF (−1)

2
+

(
3

8
+

5

8

(
2−

(
2

p

)))
h(k1) +

h(k2)

4
+
h(k3)

6
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for p > 5 and p ≡ 3 (mod 4). M. Peters pointed out that the formulas in the right
hand sides of (1.4) and (1.5) coincide with formulas for the proper class number
H+(dF ) of even definite quaternary quadratic forms of discriminant dF (see [6,
p. 85 and p. 95]), where dF is the discriminant of F = Q(

√
p ). That is, we have

(1.6) h(D) = h(F )H+(dF ) for all primes p > 5.

Particularly, the number h(D)/h(F ) is always an integer. The above formula for
H+(dF ) is obtained by Kitaoka [16] for primes p ≡ 1 (mod 4) and by Ponomarev
[24, 25] for all primes p. Inspired by Peters’ comment, we chased the literature and
discovered that formula (2) of Theorem 1.3 was obtained in [23].

The calculations for both Theorem 1.2 and 1.3 will be carried out in Section 6.2.
The main idea of the proof of Theorem 1.2 is to apply Eichler’s class number for-
mula ([9], cf. [29, Chapter V, Corollary 2.5, p. 144]) for totally definite quaternion
algebras. Eichler proved the class number formula for Eichler OF -orders. Based
on Eichler’s methods, Körner [17] worked out a similar class number formula for
any OF -order. However, the class number formula established in [17] is not readily
applicable in our case as the orders arising from the endomorphism rings of su-
persingular abelian surfaces studied above do not necessarily contain the ring of
integers OF ⊂ F . The first half of this paper (Sections 2–5) is then devoted to
proving a similar class number formula and mass formula for arbitrary Z-orders.
Our generalized Eichler class number formula is the following.

Theorem 1.5 (Class number formula). Let D be a totally definite quaternion
algebra over a totally real number field F , and O ⊂ D an arbitrary order in D with
center A := Z(O). The class number of O is given by

(1.7) h(O) = Mass(O) +
1

2

∑
w(B)>1

(2− δ(B))h(B)(1− w(B)−1)
∏
p

mp(B),

where the summation is over all the non-isomorphic orders B whose fraction field
K is a quadratic extension of F embeddable into D, and

B ∩ F = A, w(B) := [B× : A×] > 1.

Here Mass(O) is given by Definition 3.3.2 and can be computed by the mass formula
(5.6); mp(B) is the number of conjugacy classes of local optimal embeddings (3.6);
and δ(B) = 1 if B is closed under the complex conjugation ι ∈ Gal(K/F ), and 0
otherwise.

In the course of proving the class number formula we realize a subtle point that
the reduced norm of a Z-order may strictly contain its center. This causes some
confusion as there are possibly more than one choice for defining Brandt matrices
and other terms as well at a few places. Thus one needs to examine all details
in the original proof in [9] (also [29, Chapter V, Corollary 2.5, p. 144]) until
the final formula goes through. Our definition of Brandt matrices is justified by
representation theory (Section 4). We remark that the methods of results here are
algebraic, therefore all results in Sections 2-4 make sense and remain valid when
F is replaced by an arbitrary global function field, and A by any S-order (whose
normalizer is the S-ring of integers), possibly except for Theorems 3.3.3 and 3.3.7
and Corollary 3.3.8 in characteristic 2; also see Remark 4.2.2.

The second main part (Sections 6–9) of this paper is then devoted to proving
the explicit formulas given in Theorems 1.2 and 1.3. In Sections 7–9, we classify
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A-orders B in Theorem 1.5 and compute the invariant w(B) and the class number
h(B) for each B. These sections are self-contained and can be read independently.
The results obtained there will be used in Section 6 for the proof of Theorems 1.2
and 1.3. Based on our explicit formulas, we used Magma to evaluate the numbers
H(p) for p < 10000 and make the tables for values of related terms for p < 200.

At the end of this endeavor, it should be clear that the computation for H(p)
also serves as a great exercise for understanding the class number formula (1.7).
Concrete proper A-orders B covering all major cases naturally arise in the elliptic
term. It is also an interesting problem to compute local optimal embeddings of
these orders.

In a sequel paper we study the endomorphism rings of abelian varieties X in the
isogeny class Isog(Xπ). Through analyzing the action of the Picard group Pic(OF )
on the principal genus in Isog(Xπ) (those with maximal endomorphism rings), we
obtain a direct proof of the equality (1.6) without computation. Combining the
formula for h(D) in this paper, we give a different proof of the results of Kitaoka
and Ponomarev as stated in Remark 1.4.

2. Preliminaries

2.1. Notations and definitions. Let F be a number field with ring of integers
OF and A ⊆ OF a Z-order in F . Let D be a finite-dimensional central simple
F -algebra, and O an A-order in D. The order O is said to be a proper A-order if
O ∩ F = A. Similarly, for any finite field extension K/F , we say an order B ⊆ OK
is a proper A-order if B ∩ F = A. An order B is called a quadratic proper A-order
if B is a proper A-order and the fraction field K of B is a quadratic extension of
F . It does not necessarily mean that B is an A-module generated by 2 elements.
In fact, we will be interested only in those quadratic proper A-orders B for which
K is a totally imaginary quadratic extension of F in the case that F is totally real.

We will need the adelic language in the subsequent sections. For any place v of
F , denote by Fv the completion of F at v and Ov ⊂ Fv the ring of integers if v is a

finite place. Let Ẑ := lim←−Z/nZ =
∏
p Zp be the pro-finite completion of Z. Given

any Z-module Y , we write

Ŷ := Y ⊗Z Ẑ =
∏
p

Yp, where Yp := Y ⊗Z Zp.

If Y is also an OF -module, then Yp further factors into
∏
v|p Yv, where Yv :=

Y ⊗OF
Ov. We are mostly concerned with the case where Y is a finite-dimensional

Q-vector space or a Z-module of finite rank. For example, Ô =
∏
pOp, Â =

∏
pAp,

and Q̂ = Ẑ⊗Z Q is the ring of finite adeles of Q. We also have that F̂ = F ⊗Z Ẑ =

F ⊗Q Q̂ =
∏′
v: finite Fv is the ring of finite adeles of F , and D̂ = D⊗Q Q̂ = D⊗F F̂

is the finite adele ring of D. Thus, Ô× ⊂ D̂× and Â× ⊂ F̂× are open compact

subgroups of the finite idele groups D̂× and F̂×, respectively.
A lattice I ⊂ D is a finitely generated Z-module that spans D over Q. Its

associated left order Ol(I) is defined to be Ol(I) := {x ∈ D | xI ⊆ I}. Similarly,
one defines the associated right order Or(I). The lattice I is said to be a right
O-ideal if IO ⊆ I. A right O-ideal is not necessarily contained in O, and those
that lie in O are called integral right O-ideals.
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Any rightO-ideal I is uniquely determined by its completion Î ⊂ D̂, as I = Î ∩D.

For any g ∈ D̂×, we set

gI := gÎ ∩D, gOg−1 := gÔg−1 ∩D.
Then gI is again a right O-ideal and gOg−1 is an order in D.

Given an ideal a ( A, we write Aa for the a-adic completion lim←−A/a
n of A, and

Ya := Y ⊗A Aa for any finitely generated A-module Y .
If S is a finite set, most of the time we write |S| for the cardinality of S, though

sometimes it is more convenient to write it as #S.

2.2. Locally principal ideals. A right O-ideal I is said to be locally principal
with respect to A = O∩F if Im is a principal Om-ideal for all maximal ideals m of
A. Similarly, I is said to be locally principal with respect to Z if Ip is a principal
Op-ideal for all primes p. However, these two definitions are equivalent. Clearly
one has the decomposition Op =

∏
m|pOm arising from Ap =

∏
m|pAm. It follows

that the ideal Ip is Op-principal if and only if Im is Om-principal for all m|p. Thus,
there is no confusion when I is said to be a locally principal right O-ideal.

Any locally principal right O-ideal I is of the form gO for some g ∈ D̂×. We
have

(2.1) Or(I) = O, Ol(I) = gOg−1.

Define I−1 := Og−1. Then I−1 is a left O-ideal whose associated right order is
Ol(I), and

(2.2) I−1I = O, II−1 = gOg−1 = Ol(I).

Note that I is a locally principal right Or(I)-ideal if and only if it is a locally
principal left Ol(I)-ideal. Thus if we say (a lattice) I is locally principal, without
any reference to orders, it is understood that I is locally principal for both Ol(I)
and Or(I).

Given two locally principal right O-ideals I and J , we write I ' J if they are
isomorphic as right O-ideals. This happens if and only if there exist g ∈ D× such
that gI = J . Denote by Cl(O) the set of isomorphism classes of locally principal

right O-ideals in D. The map g 7→ gO for g ∈ D̂× induces a natural bijection

D×\D̂×/Ô× ' Cl(O).

The class number of O will be denoted by h = h(O) := |Cl(O)|.

2.3. Norms of ideals. We study some properties of the norms of ideals in the
present setting (the ground ring A is not necessarily integrally closed). For any
A-lattice I in D, define the norm of I (over A) by

NrA(I) :=

{
m∑
i=1

ai Nr(xi) for some m ∈ N
∣∣∣ ai ∈ A, xi ∈ I } ⊂ F,

where Nr : D → F denotes the reduced norm map. The formation of reduced
norms of lattices commutes with completions. That is, for any ideal a ( A,

(2.3) NrA(I)a = NrAa
(Ia).

The inclusion ⊆ is obvious as I ⊆ Ia. Since NrA(I) is a finitely generated A-
module, NrA(I)a = NrA(I) ⊗ Aa is the completion of NrA(I) with respect to the
a-adic topology. In particular, NrA(I)a is closed in NrAa

(Ia). Let NrSet be the set
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theoretic image under the reduced norm map. Note that Nr is continuous with
respect to the a-adic topology, and I is dense in Ia. We have

NrSet(Ia) = NrSet(Ī) ⊆ NrSet(I) ⊆ NrA(I)a,

where the overline denotes the closure in the a-adic topology. Since NrAa
(Ia) is

spanned by NrSet(Ia) over Aa, we obtain the other inclusion needed for the verifi-
cation of (2.3).

Let Ãl := NrA(Ol(I)) and Ãr := NrA(Or(I)). Clearly, NrA(I) is a module over

the ring Ã := ÃlÃr. Here extra caution is needed since that Ãl (or Ãr) may strictly
contain A even if Ol(I) (or Or(I)) is a proper A-order. An example will be given
in Section 5.2 by taking I = O8, where O8 is a certain nonmaximal order in the

quaternion algebra D∞1,∞2 . We do not know the relation between Ãl and Ãr in
general. However, NrA(I) is reasonably well behaved when I is locally principal.

Suppose that I is a locally principal right ideal for a proper A-order O. By

(2.1), Ã = Ãl = Ãr = NrA(O). If we write I = gO for some g ∈ D̂×, then

NrA(I) = Nr(g) NrA(O) = Nr(g)Ã. Hence NrA sends locally principal right O-

ideals to invertible Ã-modules. This property will enable us to define Brandt ma-
trices for arbitrary proper A-orders O in Section 3.

2.4. Multiplicative properties. Let I and J be two A-lattices in D. We dis-
cuss when the multiplicative property NrA(I) NrA(J) = NrA(IJ) holds. Clearly
NrA(I) NrA(J) ⊆ NrA(IJ) as NrA(I) NrA(J) is generated by elements Nr(x) Nr(y) =
Nr(xy) with x ∈ I, y ∈ J and xy ∈ IJ . Moreover, the equality can be checked lo-
cally: the equality NrA(I) NrA(J) = NrA(IJ) holds if and only if its local analogue
NrAp

(Ip) NrAp
(Jp) = NrAp

(IpJp) holds for every prime p. The product IJ of I and
J is said to be coherent if Or(I) = Ol(J) (cf. [26, p. 183], [29, p. 22]). We give
an example which shows that NrA(I) NrA(J) 6= NrA(IJ) when the product IJ of
I and J is not coherent, even though both I and J are locally principal lattices.

Let F = Q and D be any quaternion Q-algebra with Dp = Mat2(Qp). Take any
two Z-lattices I and J in D with

Ip =

(
Zp pZp

p−1Zp Zp

)
and Jp =

(
Zp Zp
Zp Zp

)
.

Then NrZp
(Ip) NrZp

(Jp) = Zp but NrZp
(IpJp) = p−1Zp as

IpJp =

(
Zp Zp

p−1Zp p−1Zp

)
.

In this example the local product IpJp is not coherent and thus the global product
IJ is not coherent.

Due to the above example we are content with the multiplicative properties of
the reduced norm for the type of products below.

Lemma 2.5. Suppose that the product IJ of I and J is coherent and at least one
of I and J is locally principal. Then NrA(IJ) = NrA(I) NrA(J).

Proof. Assume that I is right locally O-principal, where O = Or(I). For any prime
p, one has

NrAp(IpJp) = NrAp(xpOpJp) = NrAp(xpJp) = Nr(xp) NrAp(Jp).

Thus NrAp
(IpJp) = NrAp

(Ip) NrAp
(Jp) for all primes p and hence NrA(IJ) =

NrA(I) NrA(J). The case that J is locally principal can be proved similarly. �
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Proposition 2.6 (Criterion of units in O). We keep the notations of Section 2.1,
except that F is allowed to be either a number field or a nonarchimedean local field.
An element u ∈ O is a unit if and only if Nr(u) ∈ O×F .

Proof. Let S := OF [u] ⊂ D be the OF -algebra generated by u ∈ O. Since O is an
order, u is integral over OF , and S is a finite OF -algebra. Clearly, u ∈ S× if and
only if Nr(u) ∈ O×F . Let R = S ∩ O, then u ∈ R and S is integral over the ring R.
The proposition follows directly from Lemma 2.7 below. �

Lemma 2.7. Let R ⊆ S be an inclusion of commutative rings with S integral over
R. Then R× = S× ∩R.

Proof. Clearly, R× ⊆ S× ∩R. On the other hand,

R× = R−
⋃

m,

where the union is over all the maximal ideals m ⊂ R. Given an element u ∈ S×∩R,
to show that u ∈ R×, it is enough to show that u 6∈ m for any maximal ideal m ⊂ R.
Since S is integral over R, by the going-up theorem [1, Theorem 5.10], any maximal
ideal of R can be obtained by intersecting a maximal ideal of S with R. �

3. Traces of Brandt matrices

In this section we define Brandt matrices for arbitrary orders in a totally definite
quaternion algebra and derive a formula for the trace of Brandt matrices. This
allows us to obtain the generalized class number formula as stated in Theorem 1.5.
We follow closely Eichler’s original proof [9]; also see Vignéras’s book [29].

3.1. Brandt matrices. Throughout the entire Section 3, F denotes a totally real
number field, D a totally definite quaternion F -algebra, A ⊆ OF a Z-order in F
and O a proper A-order in D. Let h = h(O) be the class number of O.

We fix a complete set of representatives I1, . . . , Ih for the right ideal classes in
Cl(O), and define

(3.1) Oi := Ol(Ii), wi := [O×i : A×].

The number wi only depends on the ideal class of Ii. Since Ii = giO for some

gi ∈ D̂×, we have Oi = giOg−1
i by (2.1). In particular, each Oi is a proper A-

order, and if O is closed under the canonical involution of D, then each Oi is also
closed under the canonical involution. Let

(3.2) Ã := NrA(O) =

{
m∑
i=1

ai Nr(xi) for some m ∈ N
∣∣∣xi ∈ O, ai ∈ A} ⊂ F.

Then Ã is an order in F with A ⊆ Ã ⊆ OF . For each i = 1, . . . , h, NrA(Ii) =

Nr(gi)Ã is an invertible Ã-module, and NrA(Oi) = Ã.

Lemma 3.1.1. We have Ã = A if and only if O is closed under the canonical
involution x 7→ Tr(x)− x.

Proof. Suppose that Ã = A, then Nr(x) ∈ A for all x ∈ O. Therefore,

Tr(x)− x = Nr(1 + x)−Nr(x)− 1− x ∈ O.
On the other hand, suppose that O is closed under the canonical involution. Then
for any x ∈ O, Nr(x) = (Tr(x) − x)x lies in O, and hence Nr(x) ∈ O ∩ F = A. It

follows that Ã = NrA(O) = A. �
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In general, Ã is not necessarily equal to A. This is the crucial difference in
deriving the trace formula for Brandt matrices over non-Dedekind ground rings.
For brevity, we write Nr(I) for NrA(I).

Proposition 3.1.2. Let n be a locally principal integral Ã-ideal. For any two
integers i and j with 1 ≤ i, j ≤ h = h(O), there are bijections among the following
finite sets:

(a) The set of locally principal right O-ideals J ⊆ Ii such that J ' Ij as right
O-ideals and Nr(J) = n ·Nr(Ii) ;

(b) The set of integral locally principal right Oi-ideals J ′ ⊆ Oi such that J ′ '
IjI
−1
i as right Oi-ideals and Nr(J ′) = n ;

(c) The set of right principal Oj-ideals J ′′ ⊆ IiI−1
j such that Nr(J ′′) = nNr(Ii)·

Nr(Ij)
−1 ;

(d) The set of right O×j -orbits of elements b ∈ IiI
−1
j such that Nr(bOj) =

nNr(Ii) Nr(Ij)
−1.

Proof. The bijection between (a) and (b) is given by J 7→ J ′ := JI−1
i . It is easy to

see that the product JI−1
i is coherent and hence Nr(JI−1

i ) = Nr(J) Nr(Ii)
−1. The

bijection between (a) and (c) is given by J ′′ := JI−1
j . The bijection between (c)

and (d) is given by J ′′ = bOj . �

Perhaps it is helpful to indicate why the sets in the proposition above are finite.
This is already known if A = OF in Körner [17]. Consider the set in (b). There are
finitely many ideals J ′OF ⊆ OiOF with Nr(J ′OF ) = nOF . As cOF ⊆ A ⊆ OF for
some c ∈ N>0, there are also finitely many ideals J ′ ⊆ Oi with cJ ′OF ⊆ J ′ ⊆ J ′OF
for each J ′OF .

Definition 3.1.3. Let Bij(n) be the cardinality of any of above finite sets. The
Brandt matrix associated to n is defined to be the matrix

B(n) := (Bij(n)) ∈ Math(Z).

It follows from part (d) of Proposition 3.1.2 that

(3.3) Bii(n) = #
(
{b ∈ Oi|Nr(b)Ã = n}/O×i

)
.

In particular, Bii(n) 6= 0 only if n is principal and generated by a totally positive
element.

3.2. Optimal embeddings. Let K be a quadratic CM extension of F which can
be embedded into D over F . Let B be an A-order in K. Denote by Emb(B,O) the
set of optimal embeddings from B into O. In other words,

Emb(B,O) := {ϕ ∈ HomF (K,D) | ϕ(K) ∩ O = ϕ(B)}.
Equivalently, those are the embeddings of A-orders ϕ : B ↪→ O so that O/ϕ(B)
has no torsion. One can show that Emb(B,O) is a finite set. Indeed, let x ∈ B
be a fixed element generating K over F , then each map ϕ is uniquely determined
by the image ϕ(x) in O. As the elements ϕ(x), when ϕ varies, have a fixed norm,
these elements land in the intersection of the discrete subset O and a compact set in
O⊗R, which is a finite set. Note that Emb(B,O) is nonempty only if B is a proper
A-order. Moreover, if O is closed under the canonical involution, then Emb(B,O)
is nonempty only if B is closed under the complex conjugation ι ∈ Gal(K/F ).
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The group O× acts on Emb(B,O) from the right by ϕ 7→ g−1ϕg for all ϕ ∈
Emb(B,O) and g ∈ O×. We denote

m(B,O) := |Emb(B,O)|, m(B,O,O×) := |Emb(B,O)/O×|,
w(B) := [B× : A×], and w(O) := [O× : A×].

Then one has

(3.4) m(B,O,O×) =
m(B,O)

w(O)/w(B)
.

Indeed, let ϕ ∈ Emb(B,O) be an element. The orbit O(ϕ) of ϕ under the O×-
action is isomorphic to O×/ϕ(B)×, and hence |O(ϕ)| = [O× : B×] = w(O)/w(B),
which is independent of ϕ. This gives (3.4). As a result, one obtains

(3.5)
m(B,Oi,O×i )

w(B)
=
m(B,Oi)

wi
, ∀ i = 1, . . . , h.

As Op and Oi,p are isomorphic, one has m(Bp,Op,O×p ) = m(Bp,Oi,p,O×i,p) for any
i = 1, . . . , h. For simplicity, we write

(3.6) mp(B) := m(Bp,Op,O×p ).

Lemma 3.2.1. Let h(B) := |Pic(B)| be the class number of B. We have

(3.7)

h∑
i=1

m(B,Oi,O×i ) = h(B)
∏
p

mp(B).

The proof is similar to that of [29, Theorem 5.11, p. 92] (also see [32], Lemma
3.2 and below). We provide this proof for the reader’s convenience.

Proof. We fix an embedding ϕ0 : K → D and let K0 := ϕ0(K) and B0 := ϕ0(B).
Any embedding f : K → D is of the form a 7→ g−1ϕ0(a)g for some g ∈ D×. This
gives an identification

Emb(B,Oi)/O×i ' K
×
0 \E(B,Oi)/O×i ,

where
E(B,Oi) := {g ∈ D× | g−1K0g ∩ Oi = g−1B0g},

equipped with the action of K×0 (respectively, O×i ) by multiplication from the left
(respectively, right).

Set
Ê(B,O) := {g ∈ D̂× | K0 ∩ gÔg−1 = B0}.

Let g1, ..., gh be representatives in D̂× of double cosets in D×\D̂×/Ô×. We define
a map

Φ :
h∐
i=1

K×0 \E(B,Oi)/O×i −→ K×0 \Ê(B,O)/Ô×

K×0 gO
×
i 7−→ K×0 ggiÔ×,

Note that Φ is well-defined since Ôi = giÔg−1
i . Now, for each ĝ ∈ Ê(B,O), there

exist an element b ∈ D×, an integer i with 1 ≤ i ≤ h, and an element γ̂ ∈ Ô× such
that

ĝ = b · gi · γ̂.
Then b must be in E(B,Oi), and the map

K×0 ĝÔ× 7−→ K×0 bO
×
i ∈ K

×
0 \E(B,Oi)/O×i
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gives the inverse map of Φ. This shows∐
i

Emb(B,Oi)/O×i ' K
×
0 \Ê(B,O)/Ô×.

Consider the natural surjective map

Ψ : K×0 \Ê(B,O)/Ô× � K̂×0 \Ê(B,O)/Ô×.

The base space K̂×0 \Ê(B,O)/Ô× can be decomposed locally:

(3.8) K̂×0 \Ê(B,O)/Ô× =
∏
p

(K0)×p \Ep(Bp,Op)/O×p ,

where

(3.9) Ep(Bp,Op) := {g ∈ D×p | (K0)p ∩ gOpg−1 = (B0)p}.

The fiber of a double coset K̂×0 gÔ× under the map Ψ is in bijection with the double
coset space

(3.10) K×0 \K̂
×
0 /(K̂

×
0 ∩ gÔ×g−1

)
= K×0 \K̂

×
0 /B̂

×
0 .

The assertion (3.7) then follows from (3.8) and (3.10). �

3.3. Traces of Brandt matrices. Suppose that n = Ãβ ⊆ Ã is generated by

a totally positive element β ∈ Ã. Choose a complete set S = {ε1, . . . , εs} of

representatives for the finite group Ã×+/(A
×)2, where Ã×+ denotes the subgroup

of totally positive elements in Ã×. We define two sets:

Ci := {b ∈ Oi|Nr(b) = εβ for some ε ∈ S},

Bi := {b ∈ Oi|Nr(b)Ã = n}/A×.

Since ker(A×
Nr−→ Ã×) = ker(A×

a 7→a2−−−−→ A×) = {±1},

Bi ' {b ∈ Oi|Nr(b) = εβ for some ε ∈ S}/{±1} = Ci/{±1},

and Bii(n) = |Bi|/wi by (3.3). Thus,

(3.11) Bii(n) = |Ci|/2wi.

We define the symbol

(3.12) δn =

{
1 if n = Ãa2 for some a ∈ A;

0 otherwise.

Note that the center of O or Oi is equal to A. It follows that

(3.13) 2δn = |Ci ∩A|.

Let PO,n be the set of characteristic polynomials of non-central elements b ∈ Ci
for some i. This is a finite set in Ã[X] as for any x ∈ Oi, the reduced trace

Tr(x) = Nr(x + 1) − Nr(x) − 1 ∈ Ã. It is convenient to introduce a slightly larger

finite set which is independent of O but depends on n. Let PD,n ⊂ Ã[X] be the set
consisting of all irreducible polynomials of the form X2 − tX + εβ for some ε ∈ S
such that t2 − 4εβ 6∈ F 2

v for all the ramified places v of F for D, including all the
archimedean ones. The set PD,n is again finite as the elements t are bounded for
all the archimedean norms. Clearly PO,n ⊆ PD,n.
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For each P ∈ PD,n, write KP := F [X]/(P ) and BP := A[x] ⊂ KP , where x
is the image of X in KP , and thus a root of P in KP . If x′ is the other root of
P then A[x′] is isomorphic to A[x] as A-orders. However, the order A[x′] could
be different from A[x] in KP . For example, let p ≡ 5 (mod 8), F = Q(

√
p ) with

fundamental unit ε ∈ O×F , and A = Z[
√
p ] with A× 6= O×F . Then A[εζ6] 6= A[εζ−1

6 ]

as A[εζ6, εζ
−1
6 ] = OF [ζ6] but both orders are proper A-orders (Section 9.8). We

would like to emphasize that KP is considered not just as an abstract field, but
rather a field with the distinguished element x.

Local conditions imposed in the definition of PD,n ensure the existence of an
embedding of (KP )v into Dv locally everywhere. Then the local-global principle
guarantees the existence of an embedding of KP into D as F -algebras. A pri-
ori, one needs to impose a further condition on PD,n so that every order BP is
a proper A-order. However, omission of this condition will not cause any trouble
since Emb(B,Oi) is empty if B is not a proper A-order. One has the following
equality for each 1 ≤ i ≤ h:

(3.14)
∐

P∈PO,n

∐
BP⊆B⊂KP

Emb(B,Oi) =
∐

P∈PD,n

∐
BP⊆B⊂KP

Emb(B,Oi),

as Emb(B,Oi) is nonempty only when P ∈ PO,n.

Lemma 3.3.1. There is a natural bijection

(3.15) Ci −A '
∐

P∈PD,n

∐
BP⊆B⊂KP

Emb(B,Oi).

Proof. To each element b ∈ Ci − A, one associates a triple (P,B, ϕ) in the right
hand side as follows: P is the characteristic polynomial of b, ϕ : KP → D is
the F -embedding determined by ϕ(x) = b, where x is the image of X in KP and
B := ϕ−1(Oi), which ensures that ϕ is an optimal embedding.

Conversely, to each triple (P,B, ϕ) in the right hand side, one associates the
element b := ϕ(x) in Ci−A. Clearly, the element b and the triple (P,B, ϕ) determine
each other uniquely and this gives a natural bijection between these two sets. �

Definition 3.3.2. The mass of O is defined as

Mass(O) :=

h∑
i=1

1

[O×i : A×]
=

h∑
i=1

1

wi
.

Theorem 3.3.3 (Eichler Trace Formula, first version). We have TrB(n) 6= 0 only
when the ideal n is a principal and generated by a totally positive element. When n
is generated by a totally positive element β, the trace formula for B(n) is given by

(3.16) TrB(n) = δn ·Mass(O) +
1

2

∑
P∈PD,n

∑
BP⊆B⊂KP

M(B),

where δn is defined by (3.12), and

(3.17) M(B) :=
h(B)

w(B)

∏
p

mp(B).
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Proof. We have

Bii(n) =
|Ci|
2wi

=
|Ci −A|

2wi
+

2δn
2wi

=
δn
wi

+
1

2

∑
P∈PD,n

∑
BP⊆B⊂KP

|Emb(B,Oi)|
wi

( Lemma 3.3.1 )

=
δn
wi

+
1

2

∑
P∈PD,n

∑
BP⊆B⊂KP

m(B,Oi,O×i )

w(B)
(by (3.5)).

(3.18)

Summing over i = 1, . . . , h and by Lemma 3.2.1, one obtains (3.16) for the trace of
the Brandt matrix B(n). �

3.3.4. We would like to count the right hand side of (3.15) by regrouping the
elements according to the orders B. For a fixed 1 ≤ i ≤ h, consider the quadruples
(B,P, ϕ, α) consisting of the following objects:

(a) a quadratic proper A-order B with fraction field K, which is a totally imaginary
quadratic extension of F embeddable into D,

(b) a polynomial P ∈ PD,n,
(c) an optimal embedding ϕ ∈ Emb(B,Oi),
(d) an F -isomorphism α : KP → K such that BP ⊆ α−1(B) ⊂ KP . Equivalently,

α ∈ HomA(BP , B).

Clearly, each such quadruple defines a unique element b ∈ Ci − A given by b :=
ϕ(α(x)). Two quadruples (Br, Pr, ϕr, αr)r=1,2 are identified if P1 = P2 and there
exists an isomorphism ρ : B1 → B2 such that ϕ1 = ϕ2 ◦ ρ, α2 = ρ ◦ α1.

Suppose that two quadruples (Br, Pr, ϕr, αr)r=1,2 give rise to the same b ∈ Ci−A.
Then necessarily P1 = P2 since both are the characteristic polynomial of b. Denote
this polynomial by P . An F -embedding KP ↪→ D is uniquely determined by the
image of x. So ϕ1 ◦ α1 = ϕ2 ◦ α2. In particular,

(3.19) BP ⊆ α−1
1 (B1) = α−1

1 ϕ−1
1 (Oi) = α−1

2 ϕ−1
2 (Oi) = α−1

2 (B2) ⊂ KP .

So B1 and B2 are isomorphic. Without lose of generality, we may assume that B :=
B1 = B2 from the very beginning. Note that ϕ1 = ϕ2 implies that α1 = α2 and
vice versa. Suppose that α2 = ι ◦ α1, where ι ∈ Gal(K/F ) is the unique nontrivial
isomorphism (i.e. the complex conjugation). Then ϕ1 = ϕ2 ◦ ι, and it follows from
(3.19) that ι(B) = B. On the other hand, if (B,P, ϕ, α) satisfies conditions (a)–(d)
and ι(B) = B, then (B,P, ϕ ◦ ι, ι ◦ α) again satisfies these conditions, and the two
quadruples give rise to the same element in Ci −A.

Recall that n = Ãβ. For each quadratic proper A-order B, let TB,n ⊂ B be the
finite set

(3.20) TB,n := {x ∈ B −A |NK/F (x) = εβ for some ε ∈ S },
and PB,n be the set of characteristic polynomials of elements in TB,n. In general
n should be clear from the context, so we drop it from the subscript and write TB
and PB instead. We define

CB,i := {(P,ϕ, α) | P ∈ PB , ϕ ∈ Emb(B,Oi), α ∈ HomA(BP , B)}.(3.21)

Note that if P ∈ PB but P 6∈ PO,n, then Emb(B,Oi) = ∅ for all 1 ≤ i ≤ h. The
fiber of the projection map CB,i → PB over each P ∈ PB is

EB,P,i := Emb(B,Oi)×HomA(BP , B).
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The set EB,P,i is equipped with an action of Gal(K/F ) in the following way: if
ι(B) = B, then ι acts by sending (ϕ, α) 7→ (ϕ ◦ ι, ι ◦ α); otherwise ι acts trivially.
It is clear that this action is independent of P and i. Let Gal(K/F ) act on CB,i
fiber-wisely. We have

(3.22) Ci −A '
∐
B

CB,i/Gal(K/F ),

where the disjoint union is taken over all the non-isomorphic quadratic proper A-
ordersB. In the next two subsections, we calculate the cardinality of CB,i/Gal(K/F ).
There are two cases to consider, depending on whether ι(B) = B or not.

3.3.5. Suppose that ι(B) = B. We have

CB,i/Gal(K/F ) =
∐
P∈PB

EB,P,i/Gal(K/F ).

Note that HomA(BP , B) = HomF (KP ,K) for all P ∈ PB in this case. Any choice
of a fixed element α ∈ HomF (KP ,K) induces an isomorphism

(3.23) Emb(B,Oi) ' EB,P,i/Gal(K/F ), ϕ 7→ (ϕ, α).

Therefore,
|CB,i/Gal(K/F )| = |PB | · |Emb(B,Oi)|.

Since ι(B) = B, an element b ∈ TB if and only if ι(b) ∈ TB . We have a surjective
2-to-1 map TB → PB . It follows that

(3.24) |CB,i/Gal(K/F )| = 1

2
|TB | · |Emb(B,Oi)|.

3.3.6. Suppose that ι(B) 6= B. Let QB be the set of pairs {(P, α) | P ∈ PB , α ∈
HomA(BP , B)}. Since Gal(K/F ) acts trivially, we have

CB,i/Gal(K/F ) = CB,i =
∐

(P,α)∈QB

Emb(B,Oi).

We claim that there is a canonical bijection between TB and QB . Indeed, each
pair (P, α) ∈ QB determines a unique element b := α(x) ∈ TB , where x is the
distinguished element in KP . On the other hand, given any element b ∈ TB , we
just set P to be the characteristic polynomial of b, and α : BP → B to be the
canonical homomorphism sending x to b. Therefore, if ι(B) 6= B, then

(3.25) |CB,i/Gal(K/F )| = |TB | · |Emb(B,Oi)|.

Let δ(B) be the symbol

(3.26) δ(B) :=

{
1 if ι(B) = B;

0 otherwise.

Theorem 3.3.7 (Eichler Trace Formula, second version). Suppose that n = Ãβ is

generated by a totally positive element β ∈ Ã. Let |TB,n| be the cardinality of the
set TB,n defined in (3.20). The trace formula for B(n) is given by

TrB(n) = δn ·Mass(O) +
1

4

∑
B

(2− δ(B))M(B)|TB,n|.

Here in the last summation B runs through all (non-isomorphic) quadratic proper
A-orders which can be embedded into D.
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Proof. The proof employs the same line of arguments as Theorem 3.3.3, except that
instead of applying Lemma 3.3.1, one combines (3.22), (3.24) and (3.25). �

Note that if O is closed under the canonical involution of D, then Ã = A by
Lemma 3.1.1. In this case, only those quadratic proper A-orders B closed under
the complex conjugation need to be considered in the trace formula, as Emb(B,Oi)
is empty for all 1 ≤ i ≤ h if δ(B) = 0. This observation applies to the class number
formula below as well.

When n = (1) = Ã, the Brandt matrix B(Ã) is the identity and TrB(Ã) = h(O).

Corollary 3.3.8 (Class number formula).

h(O) = Mass(O) +
1

2

∑
P∈PD,(1)

∑
BP⊆B⊂KP

M(B)

= Mass(O) +
1

2

∑
w(B)>1

(2− δ(B))h(B)(1− w(B)−1)
∏
p

mp(B).

(3.27)

Here in the last summation B runs through all (non-isomorphic) quadratic proper
A-orders with w(B) = [B× : A×] > 1. Equivalently,

(3.28) h(O) = Mass(O) +
1

2

∑
K

∑
B⊂K,
w(B)>1

h(B)(1− w(B)−1)
∏
p

mp(B),

where K runs through all (non-isomorphic) totally imaginary quadratic extensions
of F embeddable into D, and B runs through all the distinct quadratic proper A-
orders in OK with w(B) > 1.

Proof. The first part of (3.27) follows directly from Theorem 3.3.3. For each
quadratic proper A-order B, let q = w(B), and B×/A× = {1̄, x̄2, . . . , x̄q}. As
the map TB,(1) → {x̄2, . . . , x̄q} is surjective and two-to-one, sending ±x 7→ x̄,
one gets #TB,(1) = 2(q − 1). So the second part of (3.27) follows from Theo-
rem 3.3.7. Formula (3.28) is just a more intuitive reformulation of (3.27). Indeed,
if B 6= ι(B), then both B and ι(B) appears in the right hand side of (3.28), giving
us 2h(B)(1− w(B)−1)

∏
pmp(B) for the isomorphic class of B. �

We call the sum in (3.27) the elliptic part (of the class number formula) and
denote it by Ell(O). In other words,

(3.29) Ell(O) :=
1

2

∑
w(B)>1

(2− δ(B))h(B)(1− w(B)−1)
∏
p

mp(B).

3.4. Local optimal embeddings. When A = OF and O is an Eichler OF -order
of level N, where N ⊆ OF is a square-free prime-to-D ideal, one has the formula
[29, p. 94] for all prime ideals p ⊂ OF ,

mp(B) := m(Bp,Op,O×p ) =


1−

(
B
p

)
if p|D;

1 +
(
B
p

)
if p|N;

1 otherwise.
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Thus, one gets

(3.30)
∏
p

mp(B) =
∏
p|D

(
1−

(
B

p

))∏
p|N

(
1 +

(
B

p

))
.

Here (B/p) is the Eichler symbol, defined as follows:(
B

p

)
:=

{(
K
p

)
if p - f(B);

1 otherwise;

where f(B) ⊆ OF is the conductor of B and (K/p) is the Artin symbol(
K

p

)
:=


1 if p splits in K;

−1 if p is inert in K;

0 if p is ramified in K.

When O is an Eichler OF -order with arbitrary prime-to-D level N, Hijikata
[11, Theorem 2.3, p. 66] computed the numbers of equivalence classes of the local
optimal embeddings from Bp into Op.

However, the situation is more delicate when Z(O) = A ( OF . Let B ⊂ K and
O ⊂ D be proper A-orders. Suppose that Dp ' Mat2(Fp) = EndFp

(Vp), where Vp
is a free Fp-module of rank two, and Op = EndAp

(Lp), where Lp is a full Ap-lattice
in Vp.

Fix an embedding ϕ0 : Kp → Dp of Fp-algebras. We view Vp as a free Kp-module
of rank one through ϕ0. A lattice Mp ⊂ Vp is said to be a proper Bp-lattice if
{x ∈ Kp | ϕ0(x)Mp ⊆Mp} = Bp. Let L(Bp, Lp, Vp) denote the set of isomorphism
classes of proper Bp-lattices Mp ⊂ Vp such that there is an isomorphism Mp ' Lp of
Ap-lattices. We claim that the number m(Bp,Op,O×p ) is equal to |L(Bp, Lp, Vp)|.
Notice that m(Bp,Op,O×p ) is the cardinality of ϕ0(Kp)

×\Ep(Bp,Op)/O×p , where
Ep(Bp,Op) is defined in (3.9). It is straightforward to check that the map g 7→ gLp
induces a bijection between the set ϕ0(Kp)

×\Ep(Bp,Op)/O×p and L(Bp, Lp, Vp).
This proves our claim.

We will need some structural theorems for modules over Bass orders. A standard
reference for Bass orders is the original work [2] of Bass. Recall that a Z-order B is
a Bass order if B is Gorenstein and any order B′ containing B is also Gorenstein.
Bass orders share the following local property: B is Bass if and only if the comple-
tion Bp is Bass for all primes p, where the definition of Bass orders for Zp-orders is
given similarly. If a Zp-order Bp is Bass, then any proper Bp-module of rank one
is isomorphic to Bp. Using this and our claim, we obtain the following lemma.

Lemma 3.4.1. Suppose that Op = EndAp(Lp). If Bp is a Bass order, then
m(Bp,Op,O×p ) is either 0 or 1, and m(Bp,Op,O×p ) = 1 if and only if Bp ' Lp as
Ap-modules.

4. Representation-theoretic interpretation of Brandt matrices

4.1. A general formulation. Let G be a unimodular locally compact topological
group. Assume there is a discrete and co-compact subgroup Γ ⊂ G. Then the
quotient Γ\G is a compact topological space with right translation action by G.
Let U ⊂ G be an open compact subgroup. Choose a Haar measure dg on G with
volume one on U and use the counting measure on Γ. Since Γ\G is compact and U
is open, the double coset space Γ\G/U is a finite set. Let L2(Γ\G) be the Hilbert
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space of square-integrable C-valued functions on the compact topological space
Γ\G. The group G acts on L2(Γ\G) by right translation, and we denote this action
by R. The subspace L2(Γ\G)U of U -invariant functions equals L2(Γ\G/U), which
is a finite-dimensional vector space. Let H(G) := C∞c (G) denote the Hecke algebra
of G, which consists of all smooth C-valued functions on G with compact support,
together with the convolution. The action of H(G) on L2(Γ\G) is as follows:

(R(f)φ)(x) =

∫
G

f(g)φ(xg)dg, f ∈ H(G), φ ∈ L2(Γ\G).

Let H(G,U) = C∞c (U\G/U) denote the subspace of U -bi-invariant functions. For
any f ∈ H(G,U), the Hecke operator R(f) sends the finite-dimensional vector space
L2(Γ\G/U) into itself.

4.2. Quaternion algebras, Brandt matrices and Hecke operators. Let D,

F , A and O be as in Section 3.1. Note that D× ⊂ D̂× is not a discrete subgroup
when [F : Q] > 1 because the unit group O×F is not finite. We consider the following
groups:

G := D̂×/Â×, Γ := D×/A×, and U := Ô×/Â×.
Then Γ ⊂ G is a discrete and co-compact subgroup. This allows us to consider
Hecke operators on the space L2(Γ\G) of functions. The group G operates transi-
tively on the set of right locally principal O-ideals. This gives natural bijections

D×\D̂×/Ô× ' Γ\G/U ' Cl(O).

Therefore, h(O) = dimL2(Γ\G/U). If 1U denotes the characteristic function of U ,
then the map R(1U ) is the identity on L2(Γ\G/U) and TrR(1U ) = h(O).

Let n ⊆ Ã be a locally principal integral Ã-ideal. The finite idele group F̂×

operates on the set of Ã-ideals. Set

U(n) := {x ∈ G |xÔ ⊆ Ô, Nr(x)Ã = n }.

This is an open compact subset in G which is stable under U by left and right
action. Using the Cartan decomposition, one easily sees that U\U(n)/U is a finite

set. Let g1, . . . , gh be a complete set of representatives for D×\D̂×/Ô×, one has

D̂× =

h∐
i=1

D×giÔ×, and G =

h∐
i=1

ΓḡiU,

where ḡi are the images of gi in G. Set Ii := giO, then I1, . . . , Ih form a complete
set of representatives for ideal classes in Cl(O).

Let χi be the characteristic function for the open compact subset Γ\ΓḡiU ⊂ Γ\G.
The set {χ1, . . . , χh} forms a basis for the vector space L2(Γ\G/U). Let f be the
characteristic function of U(n), which is an element in H(G,U), and hence R(f) is
a linear operator on L2(Γ\G/U). Write

R(f) ∼ (aij)

for the representing matrix with respect to the basis {χi}. One has

R(f)(χj) =

h∑
i=1

aijχi.
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One computes

R(f)(χj)(x) =

∫
G

f(g)χj(xg)dg =

∫
U(n)

χj(xg)dg.

Thus,

aij = R(f)(χj)(ḡi) =

∫
U(n)

χj(ḡig)dg =

∫
Uij

dg = vol(Uij),

where

Uij := {g ∈ U(n) | ḡig ∈ ΓḡjU}.
Each Uij is invariant under right translation of U . For each fixed i with 1 ≤ i ≤ h,
the set U(n) is the disjoint union of Uij for j = 1, . . . , h. For g ∈ Uij , one has

ḡigO ' ḡjO = Ij , and ḡigO ⊆ ḡiO = Ii.

If one puts J := ḡigO, then Nr(J) = nNr(Ii). As a result we get a bijection

Uij/U ' {J ⊆ Ii | J ' Ij , Nr(J) = nNr(Ii)}, by g 7→ ḡigO.

Therefore, we get

aij = |Uij/U | = Bij(n).

Theorem 4.2.1. Let f be the characteristic function of U(n) as above. Then the
Brandt matrix is the representing matrix of the Hecke operator R(f) with respect
to the basis χ1, . . . , χh for the vector space L2(Γ\G/U).

Remark 4.2.2. In the function field setting where

• F is a global function field with constant field Fq,
• A an S-order (whose normalizer is the S-ring of integers), where S is a

nonempty finite set of places of F ,
• D a definite quaternion F -algebra relative to S, and
• O a proper A-order in D,

all results in Sections 3-4 make sense and remain valid, possibly except for Theo-
rems 3.3.3 and 3.3.7 and Corollary 3.3.8 in characteristic 2.

5. Mass of Orders

5.1. Mass formula. We keep the notations and assumptions of Section 3.1. In
particular, {I1, . . . , Ih} is a complete set of representatives for the right ideal classes
in Cl(O), and Oi = Ol(Ii). Recall that the mass of O is defined by

(5.1) Mass(O) =

h∑
i=1

1

wi
, wi = [O×i : A×].

The mass of O is independent of the choices of representatives for Cl(O).

Lemma 5.1.1. Let G := D̂×/Â×, Γ := D×/A× and U := Ô×/Â×. Then Γ is a
discrete cocompact subgroup of G, and for the counting measure on Γ and any Haar
measure on G, we have

(5.2) vol(Γ\G) = vol(U) ·Mass(O).
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Proof. By [17, Equation (1). p. 190], one has h = |Γ\G/U |. Write G =
∐h
i=1 ΓgiU .

Then

vol(Γ\G) =

h∑
i=1

vol(Γ\ΓgiU) =

h∑
i=1

vol(U)

|Γ ∩ giUg−1
i |

.(5.3)

The statement then follows from [O×i : A×] = |Γ ∩ giUg−1
i |. �

Lemma 5.1.2. Let R ⊆ O be two Z-orders in D with centers R and A, respectively.
Then

(5.4) Mass(R) = Mass(O)
[Ô× : R̂×]

[A× : R×]
.

Proof. Let G1 := D̂×/Â×, Γ1 := D×/A×, U1 := Ô×/Â×. We define G2, Γ2 and U2

for the order R similarly. The map G2 → G1 is a finite cover with degree [Â× : R̂×]
and Γ2 → Γ1 is a finite cover of degree [A× : R×]. Therefore, one gets

vol(Γ2\G2) = vol(Γ1\G1)
[Â× : R̂×]

[A× : R×]
.

On the other hand, vol(U1)/vol(U2) = [Ô× : R̂×]/[Â× : R̂×]. The lemma now
follows from Lemma 5.1.1. �

Let Omax be a maximal order in D containing O. The mass formula [29, Chapter
V, Corollary 2.3] states that

(5.5) Mass(Omax) =
1

2n−1
|ζF (−1)|h(F )

∏
p|D

(N(p)− 1),

where ζF (s) is the Dedekind zeta-function of F , D ⊆ OF is the discriminant ideal
of D over F and p ranges in the set of prime ideals of OF that divide D. Using
Lemma 5.1.2, one easily derives the relative mass formula

Mass(O) = Mass(Omax) · [Ô×max : Ô×]

[O×F : A×]

=
1

2n−1
|ζF (−1)|h(F )

∏
p|D

(N(p)− 1) · [Ô×max : Ô×]

[O×F : A×]
.

(5.6)

5.2. Special cases. Let F = Q(
√
p ), where p is a prime number, andD = D∞1,∞2 ,

the totally definite quaternion F -algebra ramified only at the archimedean places
{∞1,∞2}. Let O1 be a maximal OF -order in D and A = Z[

√
p ] ⊆ OF . By (5.5),

the mass of O1 is

(5.7) Mass(O1) =
1

2
ζF (−1)h(F ).

5.2.1. Mass of Or, r = 8, 16. Assume that p ≡ 1 (mod 4) for the rest of this
subsection. In this case A 6= OF , and A/2OF ∼= F2. Let O8,O16 ⊂ O1 be the
proper A-orders such that

(O8)2 := O8 ⊗Z Z2 =

(
A2 2OF2

OF2
OF2

)
, (O16)2 = Mat2(A2),(5.8)

(Or)` = (O1)` ∀prime ` 6= 2, r ∈ {8, 16}.(5.9)

The order Or ⊂ O1 is of index r.
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We claim that NrA(O8) = OF 6= A. It is enough to show that NrA`
((O8)`) =

(OF )` for all primes `, which follows from (5.8) for ` = 2, and (5.9) for the rest of
the primes.

Put $ := [O×F : A×]. It is shown in Section 9.2 that $ ∈ {1, 3}, and $ = 1 if
p ≡ 1 (mod 8). By formula (5.6), one has

(5.10) Mass(Or) = Mass(O1)
[(O1/2O1)× : (Or/2O1)×]

$
, r = 8, 16.

The group (O16/2O1)× ' GL2(F2) and hence |(O16/2O1)×| = 6.
Suppose that p ≡ 1 (mod 8). The group (O1/2O1)× ' GL2(F2)×GL2(F2) is of

order 36. By (5.10) we have Mass(O16) = 6 Mass(O1). For the order O8 one has

O8/2O1 '
(

F2 0
F2 × F2 F2 × F2

)
,

and hence |(O8/2O1)×| = 4. Therefore by (5.10) we have Mass(O8) = 9 Mass(O1).
Suppose now that p ≡ 5 (mod 8). The group (O1/2O1)× ' GL2(F4) is of order

180. Thus, Mass(O16) = 30/$ ·Mass(O1). Since

O8/2O1 '
(
F2 0
F4 F4

)
,

we have |(O8/2O1)×| = 12. Thus, Mass(O8) = 15/$ ·Mass(O1) by (5.10).
In summary,

Mass(O8) =

{
9/2 · ζF (−1)h(F ) for p ≡ 1 (mod 8);

(15/2$) · ζF (−1)h(F ) for p ≡ 5 (mod 8);

Mass(O16) =

{
3 ζF (−1)h(F ) for p ≡ 1 (mod 8);

(15/$) · ζF (−1)h(F ) for p ≡ 5 (mod 8).

(5.11)

6. Supersingular abelian surfaces

6.1. Isomorphism classes. Let π =
√
p and Xπ an abelian variety over Fp cor-

responding to the Weil number π. Let Isog(Xπ) denote the set of Fp-isomorphism
classes of abelian varieties in the isogeny class of Xπ over Fp. It is known that
the endomorphism algebra D of Xπ over Fp is isomorphic to the totally definite
quaternion algebra D = D∞1.∞2

over F = Q(
√
p ) defined in Section 5.2. We also

recall the orders O1,O8,O16 introduced there. The endomorphism ring of each
member X in Isog(Xπ) may be regarded as an order in D, uniquely determined up
to a inner automorphism of D. Let Or denote the genus consisting of orders in D
which are locally isomorphic to Or at every prime `.

We will need the following result, which is a special case of [33, Theorem 2.2].

Proposition 6.1.1. Let X0 be an abelian variety over a finite field Fq and R :=
EndFq

(X0) the endomorphism ring of X0. Then there is a natural bijection from
the set Cl(R) to the set of Fq-isomorphism classes of abelian varieties X satisfying
the following three conditions

(a) X is isogenous to X0 over Fq,
(b) the Tate module T`(X) is isomorphic to T`(X0) as Gal(F̄q/Fq)-modules for

all primes ` 6= p,
(c) the Dieudonné module M(X) of X is isomorphic to M(X0).
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Theorem 6.1.2.
(a) Suppose that p 6≡ 1 (mod 4). The endomorphism ring of any member X in

Isog(Xπ) is a maximal order in D. Moreover, there is a bijection between the set
Isog(Xπ) with the set Cl(O1) of ideal classes.

(b) Suppose that p ≡ 1 (mod 4). The endomorphism ring End(X) of any
member X in Isog(Xπ) belongs to Or for some r = 1, 8, 16. Moreover, for each
r ∈ {1, 8, 16} the set of members X in Isog(Xπ) with End(X) ∈ Or is in bi-
jection with the set Cl(Or) of ideal classes. In particular, there is a bijection
Isog(Xπ) '

∐
r=1,8,16 Cl(Or).

Proof. Part (a) has been proven in [31, Theorem 6.2]. We prove part (b) where
p ≡ 1 (mod 4). By Proposition 6.1.1, one is reduced to classify the Tate modules
and Dieudonné modules of members X in Isog(Xπ). Since the ground field is Fp,
the Dieudonné module M(X) of X is simply an Ap-module in F 2

p . As Ap is the
maximal order in Fp, there is only one such isomorphism class and its endomorphism
ring is a maximal order in Mat2(Fp). The Tate module T`(X) of X is simply an
A`-module. Therefore, when ` 6= 2, there is only one such isomorphism class and
its endomorphism ring is again a maximal order in Mat2(F`). Now we consider
the case where ` = 2. Since 2OF2 ⊂ A2 ⊂ OF2 , the order A2 is Bass and hence
the classification of A2-modules is known; see [2]. It follows that the Tate module
T2(X) of X is isomorphic to one of the following three A2-lattices in F 2

2 :

(6.1) L1 = O2
F2
, L2 = A2 ⊕OF2

, L4 = A2
2,

(also see [34, Corollary 5.2] for a direct classification). One easily computes that
EndA2

(L1) = (O1)2, EndA2
(L2) = (O8)2 and EndA2

(L4) = (O16)2. If we let
X1, X8, X16 be members in Isog(Xπ) representing these three classes respectively
and let Rr := End(Xr), then each Rr ∈ Or and the set of members X in Isog(Xπ)
defined as in Proposition 6.1.1 is isomorphic to Cl(Rr) ' Cl(Or). This proves part
(b). �

Remark 6.1.3. Let X be a member in Isog(Xπ) with End(X) ∈ O8. We claim that

X does not admit any principal polarization. Suppose otherwise and λ : X
'−→ X∨ is

a principal polarization, where X∨ denotes the dual abelian variety. Then λ induces
a Rosati involution on End(X) (not just End0(X)) by sending φ 7→ φ′ := λ−1◦φ∨◦λ
for all φ ∈ End(X). The Rosati involution is positive in the sense of [21, Section
21]. By Albert’s classification (ibid.), the canonical involution is the unique positive
involution for any totally definite quaternion algebra. On the other hand, the
orders in O8 are not closed under the canonical involution by (5.8). We obtain a
contradiction, and hence the claim is verified.

6.2. Computation of class numbers. In this subsection, we give explicit class
number formulas for the orders O1, O8 and O16 arising from the study of supersin-
gular abelian surfaces in the isogeny class corresponding to π =

√
p . Recall that

O8 and O16 are necessary for consideration only when p ≡ 1 (mod 4). Let Z(Or)
be the center of Or. We have Z(O1) = OF , and Z(Or) = Z[

√
p ] 6= OF for r = 8, 16

when p ≡ 1 (mod 4). For the rest of this subsection we write A exclusively for the
order Z[

√
p ] when p ≡ 1 (mod 4). By Section 9.2, $ = [O×F : A×] ∈ {1, 3}, and

$ = 1 if p ≡ 1 (mod 8).
By the class number formula (3.28),

h(Or) = Mass(Or) + Ell(Or) for r = 1, 8, 16.
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The mass part Mass(Or) has already been calculated in Section 5.2. So we focus
on the elliptic part

Ell(Or) =
1

2

∑
B

(2− δ(B))h(B)(1− w(B)−1)
∏
`

m(B`, (Or)`, (Or)×` ),

where B runs through all the (non-isomorphic) quadratic proper Z(Or)-orders with

(6.2) w(B) = [B× : Z(Or)×] > 1,

and δ(B) is given by (3.26), i.e. it is 1 if B is closed under the complex conjugation,
and 0 otherwise.

The detailed classification of all the orders B will be given in the subsequent sec-
tions. We only summarize the results below. For this purpose some more notations
need to be introduced.

6.2.1. Notations of fields and orders. Let Kj = Q(
√
p ,
√
−j ) with j ∈

{1, 2, 3}1. It will be shown that

• for p > 5, all quadratic OF -orders B with [B× : O×F ] > 1 lie in Kj for some
j ∈ {1, 2, 3} (Section 7.8);
• for p ≡ 1 (mod 4), all quadratic proper A-orders B with [B× : A×] > 1 lie

in either K1 or K3 (Lemma 9.4).

We adopt the convention that Bj,k is an order in Kj with index k in OKj . The
non-maximal suborders of OKj

that we will consider are:

B1,2 := Z+ Z
√
p + Z

√
−1 + Z(1 +

√
−1 )(1 +

√
p )/2, B1,4 := Z[

√
p ,
√
−1 ],

B3,4 := Z[
√
p , ζ6] if p ≡ 1 (mod 4);

B3,2 := A[εζ6] if p ≡ 5 (mod 8) and $ = 3.

Here B3,2 is the suborder of OK3 generated by εζ6 over A, where ε ∈ O×F is the
fundamental unit of F . With the exception of B3,2, all the other orders above are
closed under the complex conjugation.

6.2.2. Class number formula for O1 when p > 5. Since O1 is a maximal order
and D∞1,∞2

splits at all the finite places, we have m(B`, (O1)`, (O1)×` ) = 1 for all
` (see [29, p. 94] or Section 3.4). It follows that

(6.3) Ell(O1) =
1

2

∑
w(B)>1

h(B)(1− w(B)−1),

where w(B) = [B× : O×F ], and the summation is over all isomorphism classes of
quadratic OF -orders B with w(B) > 1.

By Section 7.8 and Proposition 8.1, if p ≡ 1 (mod 4) and p > 5, then the only
orders with nonzero contributions to the elliptic part Ell(O1) are OK1 and OK3 ,
with w(OK1

) = 2 and w(OK3
) = 3 respectively. We have

(6.4) h(O1) =
1

2
h(F )ζF (−1) + h(K1)/4 + h(K3)/3, if p ≡ 1 (mod 4), p > 5.

1If we need the 2-adic completion of a number field K, we will have to write K ⊗Q Q2 instead
of K2 for the rest of the paper. This is needed only in Section 9.10, so no confusion should arise

in general.
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On the other hand, if p ≡ 3 (mod 4) and p ≥ 7, the following table gives a complete
list of orders B with w(B) > 1 and their class numbers (See Section 7.8 and
Section 8):

p ≡ 3 (mod 4) OK1
B1,2 B1,4 OK2

OK3

h(B) h(K1)
(

2−
(

2
p

))
h(K1)

(
2−

(
2
p

))
h(K1) h(K2) h(K3)

w(B) 4 4 2 2 3

Therefore, we have

(6.5) h(O1) =
1

2
h(F )ζF (−1) +

(
3

8
+

5

8

(
2−

(
2

p

)))
h(K1) +

1

4
h(K2) +

1

3
h(K3),

if p ≡ 3 (mod 4) and p ≥ 7.

6.2.3. Class number formula for O8 and O16 when p ≡ 1 (mod 4). Since
(Or)` is maximal for all ` 6= 2 and r ∈ {8, 16}, we have

(6.6) Ell(Or) =
1

2

∑
w(B)>1

(2− δ(B))h(B)(1− w(B)−1)m(B2, (Or)2, (Or)×2 ),

where w(B) = [B× : A×] and the summation is over all isomorphism classes
of quadratic proper A-orders B with w(B) > 1. For simplicity, we will write
m2,r(B) := m(B2, (Or)2, (Or)×2 ) for r = 8, 16. The following table gives a com-
plete list of mutually non-isomorphic quadratic proper A-orders B with w(B) > 1.
Here B3,2 is a proper A-order only if p ≡ 5 (mod 8) and $ = 3, in which case
δ(B3,2) = 0. All the data in the table below will be calculated in Section 9.

p ≡ 1 (mod 4) B1,2 B1,4 B3,4 B3,2

h(B) 1
$

(
2−

(
2
p

))
h(K1) 2

$

(
2−

(
2
p

))
h(K1) 3h(K3)/$ h(K3)

w(B) 2 2 3 3

m2,8(B) 1 0 0 1

m2,16(B) 0 1 1 0

δ(B) 1 1 1 0

For the explicit class number formulas of O8 and O16, it is more convenient to
separate into cases. If p ≡ 1 (mod 8), then

h(O8) =
9

2
ζF (−1)h(F ) +

1

4
h(K1),(6.7)

h(O16) = 3ζF (−1)h(F ) +
1

2
h(K1) + h(K3).(6.8)

If p ≡ 5 (mod 8), then

h(O8) =
15

2$
ζF (−1)h(F ) +

3

4$
h(K1) +

2δ3,$
$

h(K3),(6.9)

h(O16) =
15

$
ζF (−1)h(F ) +

3

2$
h(K1) +

1

$
h(K3),(6.10)

where δ3,$ is the Kronecker δ-symbol.



24 JIANGWEI XUE,TSE-CHUNG YANG AND CHIA-FU YU

6.2.4. Special zeta-values. Let dF be the discriminant of F = Q(
√
p ). By

Siegel’s formula [35, Table 2, p. 70],

(6.11) ζF (−1) =
1

60

∑
b2+4ac=dF
a,c>0

a,

where b ∈ Z and a, c ∈ N>0.

It remains to calculate the class numbers of O1 when p = 2, 3, 5. This has already
been done in [15]. We list the results here for the sake of completeness.

6.2.5. Class number of O1 for p = 2. In this case K1 = Q(
√

2 ,
√
−1 ) = Q(ζ8).

Besides OK1 and OK3 , we also need to consider the order Z[
√

2 ,
√
−1 ], which is of

index 2 in OK1 . The orders with nonzero contributions to Ell(O1) are

p = 2 Z[ζ8] Z[
√

2 ,
√
−1 ] Z[

√
2 , ζ6]

h(B) 1 1 1

w(B) 4 2 3

Since ζQ(
√

2 )(−1) = 1/12 by (6.11) and h(Q(
√

2 )) = 1,

h(O1) =
1

2
h(Q(

√
2 ))ζQ(

√
2 )(−1) +

1

2

((
1− 1

4

)
+

(
1− 1

2

)
+

(
1− 1

3

))
=

1

24
+

23

24
= 1 when p = 2.

(6.12)

6.2.6. Class number of O1 for p = 3. In this case, we have K1 = K3 = Q(ζ12).
Besides the orders listed in the table of Section 6.2.2, we also need to consider the
order B1,3 := Z[

√
3 , ζ6]. The table becomes

p = 3 OK1
B1,2 B1,4 B1,3 OK2

h(B) 1 1 1 1 2
w(B) 12 4 2 3 2

Hence

Ell(O1) =
1

2

((
1− 1

12

)
+

(
1− 1

4

)
+

(
1− 1

2

)
+

(
1− 1

3

)
+ 2

(
1− 1

2

))
=

23

12
.

Using (6.11) again, ζQ(
√

3 )(−1) = 1/6. Since h(Q(
√

3 )) = 1,

(6.13) h(O1) =
1

2
h(Q(

√
3 ))ζQ(

√
3 )(−1) + Ell(O1) =

1

12
+

23

12
= 2 when p = 3.

6.2.7. Class number of O1 for p = 5. In this case we also need to consider the
field Q(ζ10). The maximal order Z[ζ10] ⊂ Q(ζ10) is the only order whose unit group
is strictly larger than O×F . The orders needed for the calculation of Ell(O1) are

p = 5 OK1
OK3

Z[ζ10]
h(B) 1 1 1
w(B) 2 3 5
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Since ζQ(
√

5 )(−1) = 1/30 by (6.11) and h(Q(
√

5 )) = 1,

h(O1) =
1

2
h(Q(

√
5 ))ζQ(

√
5 )(−1) +

1

2

((
1− 1

2

)
+

(
1− 1

3

)
+

(
1− 1

5

))
=

1

60
+

59

60
= 1 when p = 5.

(6.14)

Proof of Theorem 1.2. By definition, H(p) = |Isog(Xπ)|, so it follows from Theo-
rem 6.1.2 that

H(p) =

{
h(O1) + h(O8) + h(O16) if p ≡ 1 (mod 4);

h(O1) if p ≡ 3 (mod 4) or p = 2.

The explicit formulae for h(O1) when p = 2 and p ≡ 3 (mod 4) have already been
given above.

Suppose that p = 5. We have h(O1) = 1 by Section 6.2.7. The fundamental

unit ε = (1 +
√

5 )/2 6∈ Z[
√

5 ], so $ = 3. By (6.9) and (6.10) respectively, h(O8) =
h(O16) = 1. Hence H(p) = 3 if p = 5.

Suppose that p ≡ 1 (mod 8). Combining (6.4), (6.7) and (6.8), we get

H(p) = h(O1) + h(O8) + h(O16) = 8ζF (−1)h(F ) + h(K1) +
4

3
h(K3).

Suppose that p ≡ 5 (mod 8) and p > 5. Note that 2δ3,$/$+1/$ = 1 for $ = 1, 3.
We obtain

H(p) =

(
1

2
+

15

2$
+

15

$

)
ζF (−1)h(F ) +

(
1

4
+

3

4$
+

3

2$

)
h(K1) +

4

3
h(K3)

=

(
45 +$

2$

)
ζF (−1)h(F ) +

9 +$

4$
h(K1) +

4

3
h(K3)

by combining (6.4), (6.9) and (6.10). �

6.3. Asymptotic behaviors. We keep the notations and assumptions of Sec-
tion 3.1. In particular, {I1, . . . , Ih} is a complete set of representatives of the right
ideal classes Cl(O) of an order O ⊂ D with center Z(O) = A. The automorphism
group AutO(Ii) of each Ii as a right O-module is O×i , where Oi = Ol(Ii). For an
order O with a large number of ideal classes, it is generally expected that wi =

[O×i : A×] = 1 for most 1 ≤ i ≤ h. Equivalently, we expect Mass(O) =
∑h
i=1 1/wi

to be the dominant term in the class number formula h(O) = Mass(O) + Ell(O).
This is indeed the case for the orders Or ⊂ D∞1,∞2

with r = 1, 8, 16.

Theorem 6.3.1. Assume that that p ≡ 1 (mod 4) if r = 8, 16. For all r ∈
{1, 8, 16}, we have limp→∞Mass(Or)/h(Or) = 1.

Proof. It is enough to prove that limp→∞ Ell(Or)/Mass(Or) = 0 for each r. Recall

that Mass(Or) = crζF (−1)h(F ), and Ell(Or) =
∑3
j=1 dr,j h(Kj) for some constants

cr > 0 and dr,j in each case. It reduces to prove that limp→∞ h(Kj)/(ζF (−1)h(F )) =
0 for each j ∈ {1, 2, 3}. Let kj = Q(

√
−pj ), and dkj be its discriminant. By Sec-

tion 7.10, h(Kj) ≤ h(F )h(kj) for p ≥ 5. We have limp→∞(log h(kj))/(log
√
|dkj | ) =

1 by [14, Theorem 15.4, Chapter 12]. (See also [13, Lemma 4] for a similar result
on the asymptotic behavior of relative class numbers of arbitrary CM-fields.) On
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the other hand, ζF (−1) > (p− 1)/240 by (6.11). Hence

0 ≤ lim
p→∞

h(Kj)

h(F )ζF (−1)
≤ lim
p→∞

h(kj)
ζF (−1)

= 0,

which shows that limp→∞ h(Kj)/(h(F )ζF (−1)) = 0 for all j ∈ {1, 2, 3}. �

7. Totally imaginary quadratic extensions K/F

In this section, we classify all the totally imaginary quadratic extensions of
Q(
√
p ) that have strictly larger groups of units than O×Q(

√
p ). Throughout this

section, F denotes a totally real number field with ring of integers OF and group
of units O×F , and K always denotes a totally imaginary quadratic extension of F .

We write µK for the torsion subgroup of O×K . It is a finite cyclic subgroup of O×K
consisting of all the roots of unity in K. Clearly, µF = {±1}. The quotient groups
O×F /µF and O×K/µK are free abelian groups of rank [F : Q]− 1 by the Dirichlet’s
Unit Theorem (cf. [22, Theorem I.7.4]).

7.1. Since the free abelian groups O×F /µF and O×K/µK have the same rank, the

natural embedding O×F /µF ↪→ O×K/µK realizes O×F /µF as a subgroup of O×K/µK
of finite index

(7.1) QK/F := [O×K/µK : O×F /µF ] = [O×K : µKO
×
F ].

In particular, O×F has finite index in O×K .
Suppose that µK = 〈ζ2n〉, where ζ2n is a primitive 2n-th root of unity. Let

ι : x 7→ ι(x) be the unique nontrivial element of Gal(K/F ). By [30, Theorem
4.12], QK/F is either 1 or 2. This can be seen in the following way. There is a

homomorphism φK whose image contains µ2
K = φK(µK):

(7.2) φK : O×K → µK , u 7→ u/ι(u).

One easily checks that φK(u) ∈ µ2
K if and only if u ∈ µKO

×
F , hence QK/F =

[φK(O×K) : µ2
K ] ≤ 2. Moreover, QK/F = 2 if and only if φK is surjective, i.e. there

exists z ∈ O×K such that

(7.3) z = ι(z)ζ2n.

We note that (7.2) also implies that

(7.4) u2 ≡ NK/F (u) (mod µK), ∀u ∈ O×K .

Consider the quotient group O×K/O
×
F . If QK/F = 1, then O×K = µKO

×
F , and

(7.5) O×K/O
×
F
∼= µK/µF = µK/{±1},

which is a cyclic group of order n generated by the image of ζ2n. If QK/F = 2,
there is an exact sequence

(7.6) 1→ (µKO
×
F )/O×F → O×K/O

×
F → µK/µ

2
K → 1.

Let z ∈ O×K be an element satisfying (7.3). Then

(7.7) z2 = NK/F (z)ζ2n,
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so ζ2n ≡ z2 (mod O×F ). Therefore, O×K/O
×
F is a cyclic group of order 2n generated

by the image of z in this case. Either way, O×K/O
×
F is a cyclic group. Its order

wK := |O×K/O
×
F | is given by

(7.8) wK =
1

2
|µK | ·QK/F =

{
|µK |/2 if QK/F = 1;

|µK | if QK/F = 2.

For the rest of this section, we assume that F = Q(
√
d ) is a real quadratic field

with square free d ∈ N. We will soon specialize further to the case that F = Q(
√
p )

with a prime p ∈ N. Recall that

OF =

{
Z
[
(1 +
√
d )/2

]
if d ≡ 1 (mod 4);

Z[
√
d ] if d ≡ 2, 3 (mod 4).

The fundamental unit by definition is the unit ε ∈ O×F such thatO×F = {±εa | a ∈ Z}
and ε > 1. Note that ε is totally positive if and only if NF/Q(ε) = 1.

Lemma 7.2. Let ε be the fundamental unit of F = Q(
√
d ), and K a totally imag-

inary quadratic extension of F with µK = 〈ζ2n〉. The index QK/F = 2 if and only
if NF/Q(ε) = 1 and the equation

(7.9) z2 = ε ζ2n

has a solution in K. In particular, if NF/Q(ε) = −1, then QK/F = 1.

Proof. Only the first statement needs to be proved, as the second one follows easily.
The sufficiency is obvious. We prove the “only if” part. Suppose that QK/F = 2.

Let z ∈ O×K be a representative of a generator of O×K/µK
∼= Z. By (7.4), O×F /µF

can be generated by a totally positive unit, namely NK/F (z). Therefore, ε must
be totally positive, which happens if and only if NF/Q(ε) = 1. Replacing z by 1/z
if necessary, we may assume NK/F (z) = ε. By (7.6), there exists an odd number

2c+ 1 ∈ Z such that z = ι(z)ζ2c+1
2n . We further replace z by zζ−c2n , then it satisfies

equation (7.9). �

7.3. Since [K : Q] = 4, we have ϕ(2n) ≤ 4. The possible n’s are 1, 2, 3, 4, 5, 6.
Moreover, the cases n = 4, 5, 6 can only happen in the following situations:

• if n = 4, then K = Q(ζ8) = Q(
√
−1 ,
√

2 ) and F = Q(
√

2 );

• if n = 5, then K = Q(ζ10) and F = Q(
√

5 );

• if n = 6, then K = Q(ζ12) = Q(
√

3 ,
√
−1 ) and F = Q(

√
3 ).

Lemma 7.4. Let ε be the fundamental unit of F = Q(
√
p ), where p ∈ N is a prime

number. Then NF/Q(ε) = 1 if and only if p ≡ 3 (mod 4).

Proof. If p = 2, then ε = 1 +
√

2 , so NF/Q(ε) = −1. By [7, Corollary 18.4bis,
p. 134], if p ≡ 1 (mod 4), the norm of the fundamental unit is −1. On the other
hand, if p ≡ 3 (mod 4), we claim that NF/Q(u) = 1 for any u ∈ O×F . Indeed, If

u = a + b
√
p has norm −1, then a2 − b2p = −1. Modulo p on both sides, we see

that −1 is a square in Z/pZ, contradicting to the assumption p ≡ 3 (mod 4). �

Proposition 7.5. Suppose that p ≡ 3 (mod 4), and ε is the fundamental unit of

F = Q(
√
p ). Then

√
ε/2 ∈ F , and

√
ε/2 ≡ (1 +

√
p )/2 (mod OF ).
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Proof. It is known that ε = 2x2 for some x ∈ F when p ≡ 3 (mod 4) (cf. [20,
Lemma 3, p. 91] or [36, Lemma 3.2(1)]). We have (2x)2 = 2ε ≡ 0 (mod 2OF ).
Clearly, 2x ∈ OF but x 6∈ OF . On the other hand, 1 +

√
p is the only nonzero

nilpotent element in OF /2OF . So we must have 2x ≡ 1 +
√
p (mod 2OF ), and the

second part of the proposition follows. �

Proposition 7.6. Suppose that p ≡ 3 (mod 4). Let ε be the (totally positive)
fundamental unit of F = Q(

√
p ), and K = F (

√
−ε ). Then K = F (

√
−2 ) =

Q(
√
p ,
√
−2 ), and OK = Z[

√
p ,
√
−ε ].

Proof. By Proposition 7.5, K = Q(
√
p ,
√
−2 ). Let B := Z[

√
p ,
√
−ε ] = OF [

√
−ε ] ⊆

OK , and dB = dB/Z be the discriminant of B with respect to Z. To show that
B = OK , it is enough to show that dB coincides with dOK

= dK , the absolute
discriminant of K. We have dK = 4p · (−8) · (−8p) = 28p2 by Exercise 42(f) of [19,
Chapter 2]. On the other hand,

dB = d2
F ·NF/Q(dB/OF

) = (4p)2 ·NF/Q(−4ε) = 28p2 = dK .

So indeed OK = Z[
√
p ,
√
−ε ]. �

The following proposition determines QK/F for any totally imaginary quadratic
extension K of F = Q(

√
p ).

Proposition 7.7. Suppose F = Q(
√
p ). Then QK/F = 2 if and only if p ≡ 3

(mod 4), and K is either F (
√
−1 ) = Q(

√
p ,
√
−1 ) or F (

√
−ε ) = Q(

√
p ,
√
−2 ).

Proof. By Lemma 7.2 and Lemma 7.4, QK/F = 1 for all K if p = 2 or p ≡
1 (mod 4). Assume that p ≡ 3 (mod 4) for the rest of the proof. Combining
Lemma 7.2 and Proposition 7.5, we see that QK/F = 2 if and only if the equation

(7.10) y2 = 2ζ2n

has a solution in K. By Section 7.3, the possible values of n are 6, 3, 2, 1.
If n = 6, then p = 3 and K = Q(ζ12) = Q(

√
3 ,
√
−1 ). We claim that Q(

√
2 ζ24) =

K. Indeed, Q(
√

2 ζ24) = Q(ζ3,
√

2 ζ8). Since ζ8 =
√

2
2 +

√
−2
2 , our claim follows.

Therefore, (7.10) has a solution in K and QK/F = 2 in this case.
Assume that p > 3 for the rest of the proof.
If n = 3, then K = Q(

√
p ,
√
−3 ). If

√
2 ζ12 ∈ K, then it implies that

√
−2 =√

2 ζ4 ∈ K, which is clearly false. Therefore, QK/F = 1 if K = Q(
√
p ,
√
−3 ) with

p > 3.
If n = 2, then K = Q(

√
p ,
√
−1 ). We have (1 +

√
−1 )2 = 2

√
−1 = 2ζ4.

Therefore, QK/F = 2 in this case.

Lastly, suppose that n = 1. Then QK/F = 2 implies that K = F (
√
−2 ) =

Q(
√
p ,
√
−2 ). One easily checks that µK is indeed {±1} so this is also sufficient

for QK/F = 2. �

In the case where F = Q(
√
d ) is an arbitrary real quadratic field and K is

an imaginary bicyclic biquadratic field containing F , the calculation of QK/F is
discussed in [5, Section 2].

7.8. The following table gives a complete list of the extensions K/Q(
√
p ) with

wK = [O×K : O×Q(
√
p )] > 1 for all primes p.
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p K wK p K wK p > 5 K wK

2
Q(
√

2 ,
√
−1 ) 4

5

Q(
√

5 ,
√
−1 ) 2

p ≡ 1 (4)
Q(
√
p ,
√
−1 ) 2

Q(
√

2 ,
√
−3 ) 3 Q(

√
5 ,
√
−3 ) 3 Q(

√
p ,
√
−3 ) 3

3
Q(
√

3 ,
√
−1 ) 12 Q(ζ10) 5

p ≡ 3 (4)

Q(
√
p ,
√
−1 ) 4

Q(
√

3 ,
√
−2 ) 2 Q(

√
p ,
√
−2 ) 2

Q(
√
p ,
√
−3 ) 3

It is well known that the class numbers (cf. [30, Theorem 11.1])

(7.11) h(Q(ζ8)) = h(Q(ζ10)) = h(Q(ζ12)) = 1.

Using Magma, one easily calculates that

h(Q(
√

2 ,
√
−3 )) = h(Q(

√
5 ,
√
−1 )) = h(Q(

√
5 ,
√
−3 )) = 1,(7.12)

h(Q(
√

3 ,
√
−2 )) = 2.(7.13)

7.9. Let Ej = Q(
√
−j ) for j = 1, 2, 3, and dEj be the discriminant of Ej . Suppose

that p is odd, and dF is the discriminant of F = Q(
√
p ). Consider the biquadratic

field Kj := Q(
√
p ,
√
−j ), which is the compositum of F with Ej . If p = 3, we

only take K1 and K2. Proposition 7.7 shows the following simple but mysterious
criterion:

(7.14) QKj/F = 1 ⇐⇒ gcd(dF , dEj
) = 1.

7.10. Suppose for the moment that F = Q(
√
d ) is an arbitrary real quadratic field,

and K is the compositum of F with an imaginary quadratic field E. By the work
of Herglotz [10], if K 6= Q(

√
2 ,
√
−1 ), then

(7.15) h(K) = QK/Fh(F )h(E)h(E′)/2,

where E′ is the only other imaginary quadratic subfield of K distinct from E. In
particular, if F = Q(

√
p ), Kj = Q(

√
p ,
√
−j ) and kj = Q(

√
−pj ) with j = 1, 2, 3

and p ≥ 5, then

(7.16) h(Kj) =

{
h(F )h(kj) if j = 1, 2 and p ≡ 3 (mod 4);

h(F )h(kj)/2 otherwise.

Here we used the facts that h(Q(
√
−j )) = 1 for all j ∈ {1, 2, 3} and QKj/F is

calculated in Proposition 7.7.

7.11. Suppose that p is odd, and K = K1 = Q(
√
p ,
√
−1 ). Let L = Q(

√
p∗ ) ⊂ K,

where p∗ :=
(
−1
p

)
p, and

(
·
p

)
is the Legendre symbol. Then OL = Z⊕ Zωp, with

ωp := (1 +
√
p∗ )/2 ∈ OL. Since gcd(dL, dQ(

√
−1 )) = 1, we have OK = OL[

√
−1 ] and

a Z-basis of OK is given by

(7.17)

{
1,

1 +
√
p∗

2
,
√
−1 ,

√
−1 +

√
−p∗

2

}
.

We claim that |(OK/2OK)×| = 4
(

2−
(

2
p

))
. Indeed, we have

(7.18) OK/2OK ∼= (OL/2OL)[t]/(t2 + 1) = (OL/2OL)[t]/((t+ 1)2),
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with the isomorphism sending
√
−1 7→ t̄, which denotes the image of t in the

quotient. The isomorphism (7.18) gives rise to an exact sequence

(7.19) 0→ (OL/2OL)→ (OK/2OK)× → (OL/2OL)× → 1.

Note that 2 is unramified in L, and

(7.20) OL/2OL '

F2 ⊕ F2 if
(

2
p

)
= 1;

F4 if
(

2
p

)
= −1.

Hence the exact sequence (7.19) splits. More precisely,

(7.21) (OK/2OK)× '

(Z/2Z)2 if
(

2
p

)
= 1;

(Z/3Z)⊕ (Z/2Z)2 if
(

2
p

)
= −1.

7.12. Consider the order B1,4 := Z[
√
p ,
√
−1 ] = Z[

√
p∗ ,
√
−1 ] in K = Q(

√
p ,
√
−1 )

with p odd. Since Z[
√
p∗ ]/2OL ∼= F2, we have 2OK ⊂ B1,4, and

(7.22) OK/2OK ⊃ B1,4/2OK ∼= (Z[
√
p∗ ]/2OL)[t]/((t+ 1)2) ∼= F2[t]/((t+ 1)2)

under the isomorphism (7.18). In particular, (B1,4/2OK)× ∼= Z/2Z.
Note that OL/2OL is spanned by the image of 1 and ωp over F2. One easily

checks that the only other ring intermediate to

(7.23) F2[t]/((t+ 1)2) ⊂ (OL/2OL)[t]/((t+ 1)2) = (OL/2OL)⊕ (OL/2OL)(1 + t̄ )

is F2 ⊕ (OL/2OL)(1 + t̄ ). It follows that B1,2 := Z + Z√p + Z
√
−1 + Zy∗p is the

only nontrivial suborder intermediate to B1,4 ⊂ OK , where

y∗p := ωp(1 +
√
−1 ) = (1 +

√
p∗ )(1 +

√
−1 )/2.

However, it is more convenient to define yp := (1 +
√
−1 )(1 +

√
p )/2, then B1,2 =

Z+ Z√p + Z
√
−1 + Zyp as well. Note that y2

p = (1 + p)
√
−1 /2 +

√
−p , so B1,2 =

Z[
√
−1 , yp]. Since B1,2/2OK ∼= F2 ⊕ (OL/2OL)(1 + t̄ ), we have

(B1,2/2OK)× ∼= OL/2OL ' (Z/2Z)2.

8. OF -orders in K

We keep the notations of Section 7. In particular, F = Q(
√
p ) and its ring of

integers is denoted by OF . We will classify all the quadratic OF -orders B satisfying
the following two conditions:

(i) the fraction field of B is a totally imaginary quadratic extension K of F ;
(ii) w(B) = [B× : O×F ] > 1.

Unless specified otherwise, the notation B will be reserved for such orders through-
out this section. The quotient group B×/O×F is a subgroup of the finite cyclic group

O×K/O
×
F , hence w(B) divides wK = [O×K : O×F ]. Therefore, K must be one of the

fields given in the table of Section 7.8.

Proposition 8.1. Suppose that wK is a prime. Then B = OK is the unique
OF -order in K such that w(B) > 1.
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Proof. By the table of Section 7.8, wK is a prime only when wK = 2, 3, 5. Then
O×K/O

×
F is a cyclic group of prime order with a nontrivial subgroup B×/O×F . There-

fore, B×/O×F = O×K/O
×
F , so B× = O×K . Then B ⊇ OF [u] for any u ∈ O×K .

If wK = 5, then F = Q(
√

5 ) and K = Q(ζ10). We have B ⊇ OF [ζ10] ⊇ Z[ζ10].
But Z[ζ10] is the maximal order in K. So B = OK = Z[ζ10].

IfQK/F = 2 and wK = 2, then p ≡ 3 (mod 4) andK = F (
√
−ε ) = Q(

√
p ,
√
−2 ).

Proposition 7.6 shows that OF [
√
−ε ] = OK is the maximal order in K. So B =

OK = OF [
√
−ε ].

Suppose that QK/F = 1, p is odd and K 6= Q(ζ10). In other words, we assume
one of the following holds:

• p ≡ 1 (mod 4), and K 6= Q(ζ10);
• p ≡ 3 (mod 4), p 6= 3, and K = F (ζ6) = Q(

√
p ,
√
−3 ).

Then we have K = Q(
√
p ,
√
−j ) with j ∈ {1, 3}, which depends on p. By Sec-

tion 7.9, the assumption QK/F = 1 guarantees that the discriminants of Q(
√
p )

and Q(
√
−j ) are relatively prime. Let ζ = ζ4 if j = 1 and ζ = ζ6 if j = 3. Then

B ⊇ OF [ζ]. By [18, Proposition III.17], OF [ζ] is the maximal order in K. Therefore
B = OK .

The only remaining case to consider is F = Q(
√

2 ) andK = F (ζ6) = Q(
√

2 ,
√
−3 ).

We note that the discriminants of Q(
√

2 ) and Q(
√
−3 ) are again relatively prime.

So the same argument as above shows that B = OK . �

Lemma 8.2. Suppose that p ≡ 3 (mod 4) and K = Q(
√
p ,
√
−1 ). Let B ⊆ OK

be a quadratic OF -order with 2 | w(B). Then B1,4 = Z[
√
p ,
√
−1 ] ⊆ B. Moreover,

4 | w(B) if and only if yp = (1 +
√
−1 )(1 +

√
p )/2 ∈ B.

Proof. If p = 3, then O×K/O
×
F is a cyclic group of order 12, generated by the image

of z =
√
εζ12 ∈ O×K . Since 2 | w(B), we have B 3 z6 = ε3

√
−1 . Then

√
−1 ∈ B×

as ε ∈ O×F ⊂ B×. We have 4 | w(B) if and only if B 3 z3 = ε
√
ε ζ8, or equivalently,

B 3
√
ε ζ8.

If p > 3 and p ≡ 3 (mod 4), then O×K/O
×
F is a cyclic group of order 4 generated

by z =
√
εζ4 . If 2 | w(B), then B 3 z2 = ε

√
−1 , so

√
−1 ∈ B. Moreover, w(B) = 4

if and only if B 3 z =
√
ε ζ8.

It remains to show that
√
ε ζ8 ∈ B if and only if yp ∈ B. By Proposition 7.5,

there exists m,n ∈ Z such that
√
ε/2 = m+ n

√
p + (1 +

√
p )/2. We then have

√
ε ζ8 =

√
ε/2 · (

√
2 ζ8) =

(
m+ n

√
p +

1 +
√
p

2

)
(1 +
√
−1 ).

But B already contains Z[
√
p ,
√
−1 ] by the above arguments, so

√
ε ζ8 ∈ B if and

only if yp = (1 +
√
−1 )(1 +

√
p )/2 ∈ B. �

Proposition 8.3. Suppose that p ≡ 3 (mod 4) and K = Q(
√
p ,
√
−1 ). The OF -

orders B ⊆ OK with 2 | w(B) are:

OK , w(OK) = 4 gcd(p, 3);

B1,2 = Z[
√
−1 , yp], w(B1,2) = 4;

B1,4 = Z[
√
p ,
√
−1 ], w(B1,4) = 2.

If p > 3, the above is a complete list of OF -orders in K with w(B) > 1. If p = 3,

there is an extra order B1,3 = Z[
√

3 , ζ6] with w(B1,3) = 3.
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Proof. Recall that wK = 4 or 12. Given any B ⊆ OK with w(B) > 1, we have
either 2 | w(B) or w(B) = 3, with the latter case possible only if p = 3.

Suppose that 2 | w(B). Then B ⊇ B1,4 := Z[
√
p ,
√
−1 ] by Lemma 8.2. By

Section 7.12, B1,2 is the only OF -order of index 2 intermediate to B1,4 ⊂ OK . Since
yp 6∈ B1,4, we have w(B1,4) = 2 by Lemma 8.2. On the other hand, 4 | w(B1,2).

So w(B1,2) = 4 if p > 3. Note that ζ12 = (
√

3 +
√
−1 )/2 6∈ B1,2 if p = 3. Hence

w(B1,2) = 4 in this case as well.
Suppose that p = 3, z =

√
εζ12 and 3 | w(B). Then B 3 z4 = ε2ζ6 and hence

B ⊇ Z[
√

3 , ζ6]. A Z-basis of B1,3 := Z[
√

3 , ζ6] is given by{
1,
√

3 , ζ6 =
1 +
√
−3

2
,
√

3 ζ6 =

√
3 + 3

√
−1

2

}
.

One easily checks that [OK : B1,3] = 3. Hence the only other OF -order containing

B1,3 is OK itself. Since
√
−1 6∈ B1,3, we have w(B1,3) = 3. �

For the rest of this section, we study the class numbers h(B) of those non-
maximal orders B with w(B) > 1.

8.4. For the moment let us assume thatK is an arbitrary number field, andB ⊆ OK
is an order in K with conductor f. The class number of B is given by [22, Theorem
I.12.12]

(8.1) h(B) =
h(OK)[(OK/f)

×
: (B/f)

×
]

[O×K : B×]
.

We leave it as an exercise to show that [(OK/a)× : (B/a)×] = [(OK/f)
× : (B/f)×]

for any nonzero ideal a of OK contained in f. Therefore,

(8.2) h(B) =
h(OK)[(OK/a)

×
: (B/a)

×
]

[O×K : B×]
.

Lemma 8.5. Suppose that p ≡ 3 (mod 4) and K = Q(
√
p ,
√
−1 ). Let B1,2 and

B1,4 be the orders in Proposition 8.3. We have

(8.3) h(B1,2) = h(B1,4) =

(
2−

(
2

p

))
h(OK)

if p > 3 and p ≡ 3 (mod 4). If p = 3, then h(B1,2) = h(B1,4) = h(OK).

Proof. By Section 7.12, we have OK ⊃ B1,2 ⊃ B1,4 ⊃ 2OK . So take a = 2OK in
(8.2). It has been shown in Sections 7.11 and 7.12 that

|(OK/2OK)×| = 4

(
2−

(
2

p

))
, |(B1,2/2OK)×| = 4 and |(B1,4/2OK)×| = 2.

On the other hand, [O×K : B×] = wK/w(B) for B = B1,2 or B1,4. Recall that
wK = 4 if p > 3 and wK = 12 if p = 3. The lemma now follows from Proposition 8.3,
where it has been shown that w(B1,2) = 4 and w(B1,4) = 2. �

8.6. Assume that F = Q(
√

2 ) and K = F (ζ8) = Q(
√

2 ,
√
−1 ). Then wK = 4,

and O×K/O
×
F
∼= Z/4Z. Any B ⊆ OK with w(B) > 1 must contain OF [ζ2

8 ] =

Z[
√

2 ,
√
−1 ]. By Exercise 42(b) of [19, Chapter 2], a Z-basis of OK is given by{

1,
√
−1 ,

√
2 , (

√
2 +
√
−2 )/2

}
. Let B = Z[

√
2 ,
√
−1 ], which is a sublattice
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of OK of index 2. Therefore, there are no other quadratic OF -orders B′ in K with
w(B′) > 1 and B′ 6= OK . We have

(8.4) w(OK) = 4 and w(B) = 2.

Note that
√

2OK ⊆ B. The ideal p = (1 + ζ8)OK is the unique prime ideal

above 2. Therefore, OK/
√

2OK is a two-dimensional F2-algebra whose unit group

(OK/
√

2OK)× = (OK/p
2)× ∼= Z/2Z. Since [OK : B] = 2, we have B/

√
2OK ∼= F2.

It follows that h(B) = h(OK) = 1.

8.7. Let K = Q(
√

3 ,
√
−1 ) and B1,3 = Z[

√
3 , ζ6]. We have

√
−3OK ⊂ B1,3.

On the other hand,
√
−3OK is a prime ideal in OK with residue field F9. Since

[OK : B1,3] = 3, we have B1,3/
√

3OK ∼= F3. Therefore, h(B1,3) = h(OK) = 1.

9. Quadratic proper Z[
√
p ]-orders in K

Throughout this section, we assume that p ≡ 1 (mod 4) and let A = Z[
√
p ]. It

is an order of index 2 in OF = Z+Z(1 +
√
p )/2 with A/2OF ∼= F2. We will classify

all the quadratic proper A-orders B satisfying the following two conditions:

(i) the fraction field of B is a totally imaginary quadratic extension K of F ;
(ii) w(B) := [B× : A×] > 1.

First we need some knowledge about the group A×.

Lemma 9.1. If p ≡ 1 (mod 8), then A× = O×F . In particular, the fundamental
unit ε ∈ A×.

Proof. By our assumption on p, 2OF = p1p2, where p1 and p2 are maximal ideals
of OF with residue fields OF /p1 = OF /p2 = F2. Therefore,

(OF /2OF )× ∼= (OF /p1)× × (OF /p2)×

is a trivial group. We have u ≡ 1 (mod 2OF ) for any u ∈ O×F . Hence u ∈ A∩O×F =
A×. �

9.2. If p ≡ 5 (mod 8), 2 is inert in OF , and we have (OF /2OF )× ' F×4 ' Z/3Z.

Let U (1) be the kernel of the map O×F → (OF /2OF )×. Since (A/2OF )× is the trivial

subgroup of (OF /2OF )×, we have A× = U (1). If ε ∈ A, then O×F = A× = U (1);

otherwise, O×F /A
× ' Z/3Z, and O×F → (OF /2OF )× is surjective. Here we are in

a more complicated situation since both cases may occur, and whether ε ∈ A× or
not can no longer be determined by a simple congruence condition on p. The list
of p ≡ 5 (mod 8) and p < 1000 such that ε ∈ A× are given bellow:

37, 101, 197, 269, 349, 373, 389, 557, 677, 701, 709, 757, 829, 877, 997.

This is the sequence A130229 in the OEIS [27]. For any p ≡ 1 (mod 4), we define

(9.1) $ := [O×F : A×] ∈ {1, 3}.
By Lemma 9.1, $ = 1 if p ≡ 1 (mod 8).

9.3. Let A×+ ⊂ A× be the subgroup consisting of all the totally positive elements
of A×. We claim that

(9.2) A×+ = (A×)2.

If ε ∈ A, then A× = O×F = 〈ε〉×{±1}. Since ε is not totally positive by Lemma 7.4,

we have A×+ =
〈
ε2
〉

= (A×)2. If ε 6∈ A, then A× =
〈
ε3
〉
× {±1} by Section 9.2. It

follows that A×+ =
〈
ε6
〉

= (A×)2. So either way, (9.2) holds.



34 JIANGWEI XUE,TSE-CHUNG YANG AND CHIA-FU YU

Lemma 9.4. Let K be a totally imaginary quadratic extension of F such that there
exists a quadratic proper A-order B ⊂ K with w(B) > 1. Then K is necessarily
one of the following

K1 = Q(
√
p ,
√
−1 ), K3 = Q(

√
p ,
√
−3 ).

Moreover, if K = K1, then B ⊇ Z[
√
p ,
√
−1 ].

Proof. By Section 7.3, it is enough to show that µK 6= {±1}, and K 6= Q(ζ10) if
p = 5.

First, if p = 5, the fundamental unit ε = (1 +
√

5 )/2 6∈ A, and by Section 9.2,
O×F /A

× ∼= Z/3Z. Assume K = Q(ζ10), then

{1}  B×/A× ⊆ O×K/A
× = 〈ε̄〉 ⊕

〈
ζ̄10

〉 ∼= Z/3Z⊕ Z/5Z,

where ε̄ and ζ̄10 denote the image of ε and ζ10 respectively in the quotient O×K/A
×.

Note that B×/A× can not contain the subgroup 〈ε̄〉 ∼= Z/3Z. Otherwise, B 3 ε,
which implies that B ⊃ Z[ε] = OF , contradicting to the assumption that B is a
proper A-order. On the other hand, if B×/A× ⊇

〈
ζ̄10

〉 ∼= Z/5Z, then B 3 ζ10.
Hence B ⊇ Z[ζ10], which is the maximal order in K = Q(ζ10). Again this leads to
a contradiction to the assumption on B. We conclude that K 6= Q(ζ10) if p = 5.

Recall that µK ⊇ φK(B×), where φK : u 7→ u/ι(u) is the map given in (7.2).
Clearly, φK(B×) 6= {1}. Otherwise, B× ⊆ O×F ∩ B = A×, contradicting to the
assumption that w(B) > 1.

Suppose that −1 = φK(u) for some u ∈ B×. We have −u2 = NK/F (u) ∈ A×+,

the group of totally positive units of A. Since A×+ = (A×)2 by (9.2), multiplying u
by a suitable element of A×, we may assume that u2 = −1. Therefore, K = K1 =
F (
√
−1 ). On the other hand, if K = K1, then by Section 7.1, φK(O×K) = µ2

K =
{±1} since QK/F = 1. Therefore, φK(u) = −1 for all u ∈ B× − A×. We have in

fact shown that B 3
√
−1 for all proper A-orders in K1 with w(B) > 1.

Lastly, if −1 6∈ φK(B×), then φK(B×) contains a root of unity which is not
in F . In particular, µK 6= {±1} and wK > 1. By Section 7.3, we must have
K = K3 = F (

√
−3 ) since all other possibilities have been exhausted. �

9.5. Suppose that K = K1. It has been shown in Lemma 9.4 that B ⊇ B1,4 =

Z[
√
p ,
√
−1 ]. By Section 7.12,

B1,2 = Z+ Z
√
p + Z

√
−1 + Z(1 +

√
−1 )(1 +

√
p )/2

is the only other proper A-order that contains B1,4. The class numbers of B1,2 and
B1,4 can be calculated exactly in the same way as in Lemma 8.5. Let B be either
B1,2 or B1,4. If ε ∈ A, then O×K/A

× = O×K/O
×
F
∼= Z/2Z. Hence B× = O×K . If

ε 6∈ A×, O×K/A
× ∼= Z/6Z, with the cyclic subgroup of order 3 generated by ε̄. Since

ε 6∈ B, we must have B×/A× ∼= Z/2Z in this case as well. Therefore,

(9.3) w(B1,2) = w(B1,4) = 2.

Using [O×K : A×] = 2$, we obtain

(9.4) h(B1,2) =
1

$

(
2−

(
2

p

))
h(OK1

) and h(B1,4) =
2

$

(
2−

(
2

p

))
h(OK1

).
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9.6. Suppose that K = K3. By Exercise 42 of [19, Chapter 2], a Z-basis of OK3
is

(9.5)

{
1, ωp =

1 +
√
p

2
, ζ6 =

1 +
√
−3

2
, ωpζ6 =

(1 +
√
p )(1 +

√
−3 )

4

}
.

Note that 2 is inert in L := Q(ζ6) = Q(
√
−3 ) ⊂ K. There are two primes p1, p2

above 2OL in K. Both have residue fields OK/p1 ' OK/p2 ' F4. Therefore,
OL/2OL ' F4 embeds diagonally2 into

(9.6) OK/2OK ∼= (OK/p1)× (OK/p2) ' F4 × F4.

Suppose that B ⊇ B3,4 := Z[
√
p , ζ6]. Since B3,4/2OK is a 2-dimensional F2-

vector space spanned by the images of 1 and ζ6, we have a canonical isomorphism
B3,4/2OK ∼= OL/2OL. The only other subring of F4 × F4 containing the diagonal
is F4×F4 itself. It follows that B3,4 is the only proper A-order in K containing ζ6.

We calculate the class number of B3,4 using (8.2) with a = 2OK . It has already
been shown that (B3,4/2OK)× ' F×4 ' Z/3Z, and

(9.7) (OK/2OK)× ∼= (OK/p1)× × (OK/p2)× ' (Z/3Z)2.

If ε ∈ A, then O×K = B×3,4; otherwise, O×K/B
×
3,4 is a cyclic group of order 3, generated

by the image of ε. It follows that

(9.8) w(B3,4) = 3, h(B3,4) =
3h(OK3

)

$
=

{
3h(OK3

) if ε ∈ A;

h(OK3
) if ε 6∈ A.

9.7. Suppose that K = K3 = Q(
√
p ,
√
−3 ), and $ = 1. In other words, we assume

ε ∈ A× and O×F = A×. For example, this is the case if p ≡ 1 (mod 8) by Lemma 9.1.
For any quadratic proper A-order B with w(B) > 1, we have

{1}  B×/A× ⊆ O×K/A
× ' Z/3Z.

Hence, B× = O×K , and B ⊇ Z[
√
p , ζ6]. It follows that B3,4 is the only proper

A-order with w(B) > 1 in this case.

9.8. Suppose that K = K3 = Q(
√
p ,
√
−3 ), and $ = 3. By an abuse of notation,

we still write ε and ζ6 for their images in O×K/A
×. Then

{1}  B×/A× ⊆ O×K/A
× = 〈ε, ζ6〉 ' (Z/3Z)2.

Since ε 6∈ B, B×/A× is one of the following cyclic subgroup of order 3 in O×K/A
×:

〈εζ6〉 ,
〈
εζ−1

6

〉
, 〈ζ6〉 . The case B 3 ζ6 has already been treated in the previous sub-

sections. So we focus on the orders

B3,2 := A[εζ6] = Z[
√
p , εζ6], B′3,2 := A[εζ−1

6 ] = Z[
√
p , εζ−1

6 ].

Clearly B′3,2 coincides with the complex conjugation of B3,2.

Since (εζ6)3 = −ε3 ∈ A, the order B3,2 is generated as a A-module by the set
{1, εζ6, ε2ζ2

6}. We claim that B3,2 ⊃ 2OK . A Z-basis of OK is given in (9.5).
Clearly, 2 ∈ A and 2ωp ∈ A with ωp = (1 +

√
p )/2. Let a = TrF/Q(ε) and recall

that NF/Q(ε) = −1, we have ε2 = aε+ 1. Therefore,

ε2ζ2
6 = (aε+ 1)(ζ6 − 1) = aεζ6 + ζ6 − aε− 1.

2Since the isomorphisms OK/pi ' F4 is not canonical, the diagonal of (OK/p1) × (OK/p2)

depends on the choice of (OK/p1) ' (OK/p2). Here both of them are identified naturally with
OL/2OL. In Section 9.8, we have a different diagonal. However, whichever diagonal we choose,

the prime field A/2OF
∼= F2 embeds canonically in it.
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It follows that B3,2 is also generated over A by {1, εζ6, ζ6 − aε}. Since 2aε ∈ A, we
have 2ζ6 = 2(ζ6 − aε) + 2aε ∈ B3,2. Lastly, we need to show that 2ωpζ6 ∈ B3,2.
Since ε 6∈ A, there exists x ∈ A such that ε = x+ωp. Note that 2xζ6 ∈ B3,2 because
2ζ6 ∈ B3,2, so 2ωpζ6 = 2(ε − x)ζ6 = 2εζ6 − 2xζ6 ∈ B3,2. This finishes the proof of
our claim.

Next, we show that B3,2 and B′3,2 are indeed proper A-orders and calculate their
class numbers. Since p ≡ 5 (mod 8), we have OF /2OF ' F4, which is generated by
the image of ε over A/2OF ∼= F2. Denote this image by ε̄. Recall that OK = OF [ζ6],
so

OK/2OK ' F4[t]/(t2 − t+ 1) ' F4 × F4,

sending t 7→ (ε̄, ε̄+ 1). One checks that B3,2/2OK = F4 × F2, and B′3,2 = F2 × F4.
In particular, they do not contain the diagonal of F4 × F4, which is identified with
OF /2OF . Thus both B3,2 and B′3,2 are proper A-orders of index 2 in OK = OK3 ,
conforming with the convention of our notations. In particular,

(9.9) w(B3,2) = w(B′3,2) = 3.

Using (8.2), one sees that

(9.10) h(B3,2) = h(B′3,2) = h(OK3
).

Lemma 9.9. If B ∈ {B1,2, B1,4, B3,4, B3,2}, then B is a Bass order.

Proof. By a theorem of Borevich and Faddeev [3] (cf. Curtis-Reiner [8, Section 37,
p. 789]), B is Bass if and only if the B-module OK/B is generated by one element.
In particular, if B is of prime index in OK then B is Bass. This shows that B1,2

and B3,2 are Bass orders. By (7.23), we have

OK1
/B1,4 = 〈(1 +

√
p )/2〉 ' F2[1 +

√
−1 ]/(1 +

√
−1 )2

as Z[
√
−1 ]-modules. Therefore, B1,4 is a Bass order. Since 2 is inert in Z[ζ6], one

has OK3
/B3,4 ' F4 as Z[ζ6]/(2) ' F4-modules. This proves that B3,4 is also a Bass

order. �

9.10. In this subsection, we calculate the number of conjugacy classes of local
optimal embeddings of B into O8 or O16 at ` = 2. For r = 8 or 16, we write
m2,r(B) = m(B2, (Or)2, (Or)×2 ), where (Or)2 = Or ⊗Z Z2 and B2 = B ⊗Z Z2.
Recall that

(O8)2 = EndA2(A2 ⊕OF2), (O16)2 = EndA2(A2
2)

by the proof of Theorem 6.1.2. It follows from Lemma 3.4.1 that for any A-order
B ∈ {B1,2, B1,4, B3,4, B3,2}, one has m2,r(B) ∈ {0, 1}, and

m2,8(B) = 1 ⇐⇒ B2 ' A2 ⊕OF2 ,

m2,16(B) = 1 ⇐⇒ B2 ' A2 ⊕A2.

Since A2 is a Bass order, B2 is isomorphic to one of the lattices given in (6.1).
However, B2 6' OF2

⊕OF2
as B2 is a proper A2-order. We have OFB = OK for all

B ∈ {B1,2, B1,4, B3,4, B3,2}, where the product is taken inside the fraction field K
of B. Hence B2 ⊗A2

(A2/2OF2
) ∼= B2/2(OK ⊗Z Z2) ∼= B/2OK . By looking at the

tensor product of B2 with (A2/2OF2
) for each B, we get the following isomorphisms

of A2-modules

(B1,2)2 ' (B3,2)2 ' A2 ⊕OF2
, (B1,4)2 ' (B3,4)2 ' A2 ⊕A2.
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As a result, we have

m2,8(B1,2) = 1, m2,16(B1,2) = 0, m2,8(B1,4) = 0, m2,16(B1,4) = 1,

m2,8(B3,4) = 0, m2,16(B3,4) = 1, m2,8(B3,2) = 1, m2,16(B3,2) = 0.

10. Tables

In this section, we list the class numbers h(Or) and related data for r = 1, 8, 16
(separated into 3 tables) and all primes 5 < p < 200. Here F = Q(

√
p ), and

Kj = Q(
√
p ,
√
−j ) for j = 1, 2, 3. Recall that O8 and O16 are defined only for the

primes p ≡ 1 (mod 4). Moreover, for these p the values of h(K2) are not needed in
the calculation and are left blank. By [4, footnote to table 3, p. 424], out of the
303 primes p < 2000, h(Q(

√
p )) = 1 for 264 of them. So it is not surprising that

most h(F ) = 1 in Table 1.

Table 1: Class numbers of O1 for all primes 7 ≤ p < 200.

p h(O1) Mass(O1) Ell(O1) ζF (−1) h(F ) h(K1) h(K2) h(K3)
7 3 1/3 8/3 2/3 1 1 4 2
11 4 7/12 41/12 7/6 1 1 2 2
13 1 1/12 11/12 1/6 1 1 2
17 1 1/6 5/6 1/3 1 2 1
19 6 19/12 53/12 19/6 1 1 6 2
23 7 5/3 16/3 10/3 1 3 4 4
29 2 1/4 7/4 1/2 1 3 3
31 9 10/3 17/3 20/3 1 3 8 2
37 2 5/12 19/12 5/6 1 1 4
41 2 2/3 4/3 4/3 1 4 1
43 12 21/4 27/4 21/2 1 1 10 6
47 13 14/3 25/3 28/3 1 5 8 4
53 3 7/12 29/12 7/6 1 3 5
59 16 85/12 107/12 85/6 1 3 6 2
61 3 11/12 25/12 11/6 1 3 4
67 18 41/4 31/4 41/2 1 1 14 6
71 19 29/3 28/3 58/3 1 7 4 4
73 3 11/6 7/6 11/3 1 2 2
79 69 42 27 28 3 15 24 18
83 22 43/4 45/4 43/2 1 3 10 6
89 4 13/6 11/6 13/3 1 6 1
97 4 17/6 7/6 17/3 1 2 2
101 5 19/12 41/12 19/6 1 7 5
103 31 19 12 38 1 5 20 6
107 28 197/12 139/12 197/6 1 3 6 10
109 5 9/4 11/4 9/2 1 3 6
113 5 3 2 6 1 4 3
127 39 80/3 37/3 160/3 1 5 16 10
131 38 93/4 59/4 93/2 1 5 6 6
137 6 4 2 8 1 4 3
139 44 127/4 49/4 127/2 1 3 14 6

Continued on next page
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Table 1: Class numbers of O1 for all primes 7 ≤ p < 200.

p h(O1) Mass(O1) Ell(O1) ζF (−1) h(F ) h(K1) h(K2) h(K3)
149 7 35/12 49/12 35/6 1 7 7
151 49 37 12 74 1 7 12 6
157 7 43/12 41/12 43/6 1 3 8
163 50 467/12 133/12 467/6 1 1 22 10
167 47 91/3 50/3 182/3 1 11 12 8
173 8 13/4 19/4 13/2 1 7 9
179 54 157/4 59/4 157/2 1 5 6 6
181 8 19/4 13/4 19/2 1 5 6
191 61 130/3 53/3 260/3 1 13 8 8
193 10 49/6 11/6 49/3 1 2 4
197 9 49/12 59/12 49/6 1 5 11
199 71 55 16 110 1 9 20 6

Table 2. Class numbers of O8 for all primes 5 < p < 200 and
p ≡ 1 (mod 4).

p h(O8) Mass(O8) Ell(O8)
13 2 5/12 19/12
17 2 3/2 1/2
29 4 5/4 11/4
37 7 25/4 3/4
41 7 6 1
53 7 35/12 49/12
61 8 55/12 41/12
73 17 33/2 1/2
89 21 39/2 3/2
97 26 51/2 1/2

p h(O8) Mass(O8) Ell(O8)
101 29 95/4 21/4
109 16 45/4 19/4
113 28 27 1
137 37 36 1
149 21 175/12 77/12
157 24 215/12 73/12
173 24 65/4 31/4
181 29 95/4 21/4
193 74 147/2 1/2
197 65 245/4 15/4

Table 3. Class numbers of O16 for all primes 5 < p < 200 and
p ≡ 1 (mod 4).

p h(O16) Mass(O16) Ell(O16)
13 2 5/6 7/6
17 3 1 2
29 5 5/2 5/2
37 18 25/2 11/2
41 7 4 3
53 9 35/6 19/6
61 12 55/6 17/6
73 14 11 3
89 17 13 4
97 20 17 3

p h(O16) Mass(O16) Ell(O16)
101 63 95/2 31/2
109 26 45/2 7/2
113 23 18 5
137 29 24 5
149 35 175/6 35/6
157 40 215/6 25/6
173 39 65/2 13/2
181 52 95/2 9/2
193 54 49 5
197 141 245/2 37/2
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