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CHARACTERIZATION OF BESOV SPACES

ASSOCIATED WITH PARABOLIC SECTIONS

MEIFANG CHENG∗, CHIN-CHENG LIN†, AND MENG QU‡

Abstract. We study the Besov spaces associated with a family of parabolic sections which are
closely related to the parabolic Monge-Ampère equation. We demonstrate their duals and an
embedding theorem for these Besov spaces.

1. Introduction

In 1996, Caffarelli and Gutiérrez [1] studied real variable theory related to the Monge-Ampère

equation. They considered a family of convex sets in Rn, F = {S(x, t) : x ∈ Rn, t > 0}, satisfying

certain axioms of affine invariance, and a Borel measure satisfying a doubling condition with

respect to the family F . They developed a Besicovitch-type covering lemma for the family F
and used this covering lemma with the doubling property of the Borel measure mentioned above

to set up a variant of the Calderón-Zygmund decomposition in terms of the members of F . Let

φ : Rn 7→ R be a strictly convex smooth function and consider the Monge-Ampère measure

µ := detD2φ generated by φ, where D2φ denotes the Hessian matrix of φ. For a given function

u, it is easy to see that

detD2(φ+ tu) = detD2φ+ t tr(ΦD2u) + . . .+ tn detD2u,

where Φ is the matrix of the cofactors of D2φ and tr(A) means the trace of the matrix A. For

x ∈ Rn and t > 0, Caffarelli and Gutiérrez [1] introduced a family of elliptic sections associated

with φ by

Sφ(x, t) = {y ∈ Rn : φ(y)− φ(x)−∇φ(x) · (y − x) < t}.

These sets play crucial role in the study of Monge-Ampère equation and the linearized Monge-

Ampère equation Lφu = tr(ΦD2u) (cf. [2]). In [1], Caffarelli and Gutiérrez generalized Sφ(x, t)

to an abstract family of convex sets S(x, t) satisfying properties (A), (B), and (C) given in [1,

page 1078], and we call these S(x, t) to be generalized elliptic sections. The elliptic sections

Sφ(x, t) associated with φ is an example of generalized elliptic sections.
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In 1999, Huang [11] pondered the Harnack inequality for nonnegative solutions of the lin-

earized parabolic Monge-Ampère equation

(1.1) ut − tr((D2φ(x))−1D2u) = 0,

where ut = ∂u
∂t , (D2φ(x))−1 is the inverse matrix of D2φ(x), and φ is a strictly convex smooth

function defined on Rn such that detD2φdxdt satisfies a certain doubling condition on the

parabolic sections S(x, r) × (t − c1r, t + c2r] associated with φ and is uniformly absolutely

continuous with respect to Lebesgue measure. More precisely, it was assumed in [11] that

the Monge-Ampère measure µ = detD2φ satisfies the following doubling property in terms of

sections:

(1.2) µ(S(x, t)) ≤ Cµ
(

1

2
S(x, t)

)
for all S(x, t),

where C > 0 and 1
2S(x, t) denotes 1

2 -dilation of S(x, t) with respect to its center of mass. It

was also required in [11] that µ satisfies a stronger uniform continuity condition: for any given

δ1 ∈ (0, 1), there exists δ2 ∈ (0, 1) such that, for any sections S and any measurable subset

E ⊂ S,

(1.3)
|E|
|S|

< δ2 implies
µ(E)

µ(S)
< δ1.

We note that (1.3) implies (1.2). Also, Huang obtained a Besicovitch-type covering lemma

with respect to parabolic sections. Then he considered the parabolic Monge-Ampère measure

M generated by φ(x) − t, i.e., dM = detD2φdxdt, and obtained a variant of the Calderón-

Zygmund decomposition in terms of parabolic sections and M under the uniform continuity

condition on µ. Using such a Calderón-Zygmund decomposition, Huang showed an invariant

Harnack’s inequality on parabolic sections as follows.

Theorem 1.1. Let u be a nonnegative classical solution of (1.1) in S(x0, θ̄R)×(t0− 3
2R, t0+2R],

where θ̄ is a large geometric constant. Then

sup
Q−

u ≤ C inf
Q+

u,

where Q+ = S(x0, R)× (t0 +R, t0 + 2R] and Q− = S(x0, R)× (t0 −R, t0].

Parabolic sections also appeared in the work of Gutiérrez and Huang [8], where they proved

the W 2,p estimates for the parabolic Monge-Ampère equation

(1.4) −ut detD2u = f, (x, t) ∈ Ω× (0, T ) ⊂ Rn × R,

with some suitable conditions on f and Ω being a bounded convex set. Initially (1.4) was intro-

duced by Krylov [12] in 1976. Its connection with maximum principles for parabolic equations

was observed by Krylov, and was developed further by Tso [20] and Nazarov and Ural’tseva

[15]. Equation (1.4) also arose in the work of Tso [19] on the Gauss curvature flow of convex

hypersurfaces. The first initial-boundary value problem for (1.4) was studied by R. H. Wang
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and G. L. Wang [21, 22]. Moreover, Daskalopoulos and Savin [7] obtained a C1,α estimate for

the following parabolic Monge-Ampère equation

ut = b(x, t)(detD2u)p, (x, t) ∈ Rn × R,

where p > 0 and b(x, t) is a bounded positive measurable function. Recently, Tang [17] inves-

tigated interior estimates of solutions to (1.4) in the case that f satisfies VMO-type condition,

and such VMO spaces are defined in terms of parabolic sections. It is our hope that the spaces

studied in the current paper provide another direction in the investigation of the regularity of

solutions to parabolic Monge-Ampère equation with initial data in Besov spaces.

We first recall the definition of (generalized) parabolic sections. Suppose that ϕ : [0,∞) 7→
[0,∞) is a monotonic increasing function satisfying

ϕ(0) = 0, lim
r→∞

ϕ(r) =∞, ϕ(2r) ≤ Cϕ(r),

where C is a constant depending on ϕ only. Define the generalized parabolic sections, which will

be called parabolic sections below for simplicity, by

Qϕ(z, r) = S(x, r)×
(
t− ϕ(r)

2
, t+

ϕ(r)

2

)
,

where z = (x, t) ∈ Rn × R, r > 0, and S(x, r) is the generalized elliptic sections. Note that

this definition reduces to the one given in [11] by choosing ϕ(r) = r. We will work for a fixed

ϕ satisfying the above description through the paper, and hence use Q(z, r) to express Qϕ(z, r)

for simplicity. An affine transformation T̃ on Rn+1 is said to normalize Q(z0, r) if

K
(

0,
1

n

)
⊂ T̃

(
Q(z0, r)

)
⊂ K(0, 1),

where K(z, r) = B(x, r)×
(
t− r2

2 , t+
r2

2

)
, T̃ (x, t) := (Tx, t−t0ϕ(r) ), and T is an affine transformation

on Rn normalizing S(x0, r); that is,

B
(

0,
1

n

)
⊂ T

(
S(x0, r)

)
⊂ B(0, 1).

Here we use B(x, r) to denote the ball in Rn centered at x and with radius r. Note that the

restriction of T̃ to t-axis maps
(
t0 − ϕ(r)

2 , t0 + ϕ(r)
2

)
onto (−1

2 ,
1
2). The family

P = {Q(z, r) : z = (x, t) ∈ Rn × R, r > 0}

of parabolic sections satisfies the following properties (see [11, page 2029]).

(A) There exist positive constants K1, K2, K3 and ε1, ε2 such that, given two parabolic sec-

tions Q(z0, r0), Q(z, r) in P with r ≤ r0 and an affine transformation T̃ that normalizes

Q(z0, r0), if

Q(z0, r0) ∩ Q(z, r) 6= ∅,

then there exists z′ = (x′, t′) ∈ K(0,K3), depending only on both Q(z0, r0) and Q(z, r),

satisfying

B

(
x′,K2

( r
r0

)ε2)
×
(
t′ − 1

2

ϕ(r)

ϕ(r0)
, t′ +

1

2

ϕ(r)

ϕ(r0)

)
⊂ T̃

(
Q(z, r)

)
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⊂ B
(
x′,K1

( r
r0

)ε1)
×
(
t′ − 1

2

ϕ(r)

ϕ(r0)
, t′ +

1

2

ϕ(r)

ϕ(r0)

)
and

T̃ (z) = (Tx, t′) ∈ B
(
x′,

1

2
K2

( r
r0

)ε2)
× {t′}.

(B) There exists ι > 0 such that, for any parabolic section Q(z0, r) ∈ P and z /∈ Q(z0, r), if

T̃ is an affine transformation that normalizes Q(z0, r), then

K
(
T̃ (z), ει

)
∩ T̃

(
Q(z0, (1− ε)r)

)
= ∅ for 0 < ε < 1.

(C)
⋂
r>0Q(z, r) = {z} and

⋃
r>0Q(z, r) = Rn+1.

In addition, we also assume that a Borel measure ν is given, which is finite on compact sets, no

point mass, ν(Rn+1) =∞, and satisfies the following doubling property with respect to P; that

is, there exists a constant Cν such that

(1.5) ν
(
Q(z, 2r)

)
≤ Cνν

(
Q(z, r)

)
, ∀ Q(z, r) ∈ P.

We note that the parabolic Monge-Ampère measure M using in [11] satisfies (1.5).

Since the parabolic sections are similar to elliptic cylinders, by properties (A) and (B) of

parabolic sections, it is easy to obtain the following engulfing property. There exists a constant

θ ≥ 1, depending only on ι,K1, and ε1, such that for each z′ ∈ Q(z, r) ∈ P we have

(1.6) Q(z, r) ⊂ Q(z′, θr) and Q(z′, r) ⊂ Q(z, θr).

Define a quasi-metric d on Rn+1 with respect to P by

d(z, w) = inf{r : z ∈ Q(w, r) and w ∈ Q(z, r)},

which satisfies the triangle inequality

(1.7) d(z, w) ≤ θ
(
d(z, u) + d(u,w)

)
for any z, u, w ∈ Rn+1.

Also,

(1.8) Q
(
z,

r

2θ

)
⊂ Bd(z, r) ⊂ Q(z, r) for any z ∈ Rn+1 and r > 0,

where Bd(z, r) := {w ∈ Rn+1 : d(z, w) < r} denotes the d-ball centered at z with radius r. By

(1.5) and (1.8), if we choose k0 ∈ N satisfying 2k0−2 ≥ θ, then

ν(Bd(z, 2r)) ≤ Ck0ν ν(Bd(z, r)) for any z ∈ Rn+1 and r > 0.

Hence, (Rn+1, d, ν) is a space of homogeneous type introduced by Coifman and Weiss [4]. Maćıas

and Segovia [14, Theorems 2] have shown that one can replace d by another quasi-metric ρ such

that there exist constants c > 1 and ε ∈ (0, 1) satisfying

(1.9)

{
c−1d(z, w) ≤ ρ(z, w) ≤ cd(z, w) for z, w ∈ Rn+1;
|ρ(z, w)− ρ(z′, w)| ≤ c(ρ(z, z′))ε[ρ(z, w) + ρ(z′, w)]1−ε for z, z′, w ∈ Rn+1.

By (1.7) and (1.9), it is easy to check that ρ satisfies the triangle inequality

(1.10) ρ(z, w) ≤ A
(
ρ(z, u) + ρ(u,w)

)
for any z, w, u ∈ Rn+1,
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where A = c2θ. Through the paper, we always assume that the quasi-metric ρ satisfies the

regularity condition (1.9).

Applying Coifman’s idea (cf. [6, page 16]), we can construct an approximation to the identity

associated with P on the space of homogeneous type (Rn+1, ρ, ν), which will be done later in §2,

Lemma 2.1. Here and throughout this paper, Vk(z) always denotes the measure ν(Q(z, 2−k))

for k ∈ Z and z ∈ Rn+1.

Definition 1.2. Let ρ satisfy condition (1.9). A sequence of operators {Sk}k∈Z is said to be an

approximation to the identity associated with P on the space of homogeneous type (Rn+1, ρ, ν) if

there exist positive constants C1, C2, C3 such that, for all k ∈ Z and all z, z′, w, w′ ∈ Rn+1, the

kernels Sk(z, w) of Sk satisfy the following conditions:

(i) Sk(z, w) = 0 if ρ(z, w) > C12
−k (which means that each Sk(·, w) is supported on the

section Q(w,C12
−k) and each Sk(z, ·) is supported on the section Q(z, C12

−k));

(ii) |Sk(z, w)| ≤ C2

Vk(z) + Vk(w)
;

(iii) |Sk(z, w)− Sk(z′, w)| ≤ C2
(2kρ(z, z′))ε

Vk(z) + Vk(w)
for ρ(z, z′) ≤ C32

−k;

(iv) |Sk(z, w)− Sk(z, w′)| ≤ C2
(2kρ(w,w′))ε

Vk(z) + Vk(w)
for ρ(w,w′) ≤ C32

−k;

(v)
∣∣[Sk(z, w)− Sk(z′, w)]− [Sk(z, w

′)− Sk(z′, w′)]
∣∣ ≤ C2

(2kρ(z, z′))ε(2kρ(w,w′))ε

Vk(z) + Vk(w)
for ρ(z, z′) ≤ C32

−k and ρ(w,w′) ≤ C32
−k;

(vi)

∫
Rn+1

Sk(z, w)dν(z) = 1 for all w ∈ Rn+1;

(vii)

∫
Rn+1

Sk(z, w)dν(w) = 1 for all z ∈ Rn+1.

Let Dk = Sk − Sk−1. Applying Coifman’s decomposition to the identity, we write

I =

( ∞∑
k=−∞

Dk

)( ∞∑
j=−∞

Dj

)
=
∑
k

∑
{j:|k−j|≤N}

DkDj +
∑
k

∑
{j:|k−j|>N}

DkDj =: TN +RN .

Set DN
k :=

∑
|j|≤N Dk+j . Then both TN and RN can be represented as

TN =
∑
k

DN
k Dk =

∑
k

DkD
N
k

and

RN =
∑
k

∑
|j|>N

Dk+jDk =
∑
k

∑
|j|>N

DkDk+j ,
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respectively. Using Cotlar-Stein almost orthogonal estimates, one obtains a similar Calderón-

type reproducing formula

f =
∞∑

k=−∞
T−1N DN

k Dk(f) =
∞∑

k=−∞
DN
k DkT

−1
N (f)(1.11)

in L2(Rn+1, dν), where N is a fixed large integer and T−1N is the inverse of TN . See the argument

of (2.4) below. In the next theorem, we will show that this Calderón-type reproducing formula

still holds for certain subspace of L2(Rn+1, dν).

Theorem 1.3. Let {Sk}k∈Z be an approximation to the identity associated with P on (Rn+1, ρ, ν),

set Dk = Sk − Sk−1, and ε is the one from (1.9). For |α| < ε
4 and 1 ≤ p, q ≤ ∞, if

f ∈ L2(Rn+1, dν) and satisfies that
(∑
k∈Z

(
2kα‖Dk(f)‖Lpν

)q)1/q

for 1 ≤ q <∞

sup
k∈Z

2kα‖Dk(f)‖Lpν for q =∞
(1.12)

is finite, then (1.11) holds with respect to the norm defined by (1.12).

The above theorem leads us to introduce a test function space as follows.

Definition 1.4. Let {Sk}k∈Z be an approximation to the identity associated with P on (Rn+1, ρ, ν)

and Dk = Sk − Sk−1 for k ∈ Z. For |α| < ε
4 and 1 ≤ p, q ≤ ∞, define

Ḃα,qp,P = {f ∈ L2(Rn+1, dν) : ‖f‖Ḃα,qp,P <∞},

where

‖f‖Ḃα,qp,P :=


(∑
k∈Z

(
2kα‖Dk(f)‖Lpν

)q)1/q

if 1 ≤ q <∞

sup
k∈Z

2kα‖Dk(f)‖Lpν if q =∞
.

It is clear that the test function space Ḃα,qp,P is a subspace of L2(Rn+1, dν). Applying the

above Calderón-type reproducing formula (1.11), one can show that the test function space

Ḃα,qp,P is independent of the choice of the approximation to the identity (see Theorem 4.1 below).

Let
(
Ḃα,qp,P

)′
denote the dual of Ḃα,qp,P . Note that for each fixed k and x, the function Dk(x, ·)

belongs to Ḃα,qp,P for all |α| < ε
4 , 1 ≤ p, q ≤ ∞ (see Lemma 2.5 below), and thus Dk(f) is

well defined for all f ∈ (Ḃα,qp,P)′. Moreover, applying the second difference smoothness condition

of the approximation to the identity associated with P on (Rn+1, ρ, ν), we will show that the

Calderoń-type reproducing formula (1.11) still holds on dual spaces; that is, the following (1.13)

holds.

Theorem 1.5. Under the same assumptions as Theorem 1.3, for each f ∈
(
Ḃα,qp,P

)′
,

(1.13) 〈f, g〉 =
∑
k∈Z

〈
T−1N DkD

N
k (f), g

〉
=
∑
k∈Z

〈
DkD

N
k T
−1
N (f), g

〉
, ∀ g ∈ Ḃα,qp,P .
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We now may define the Besov spaces associated with parabolic sections as follows.

Definition 1.6. For |α| < ε
4 and 1 ≤ p, q ≤ ∞, let p′ and q′ denote the conjugate index of p

and q, respectively. Suppose that {Sk}k∈Z is an approximation to the identity associated with

P on (Rn+1, ρ, ν) and set Dk = Sk − Sk−1. The Besov spaces associated with P are defined to

be

Ḃα,q
p,P =

{
f ∈

(
Ḃ−α,q

′

p′,P
)′

: ‖f‖Ḃα,qp,P
<∞

}
,

where

‖f‖Ḃα,qp,P
:=


(∑
k∈Z

(
2kα‖Dk(f)‖Lpν

)q)1/q

if 1 ≤ q <∞

sup
k∈Z

2kα‖Dk(f)‖Lpν if q =∞
.

It is known that the space of Schwartz functions is dense in the classical Besov space on Rn

(see [18, page 48]). We show that the test function space Ḃα,qp,P is dense in Ḃα,q
p,P as well.

Theorem 1.7. Let |α| < ε
4 and 1 ≤ p, q ≤ ∞. Then

Ḃα,qp,P = Ḃα,q
p,P ,

where Ḃα,qp,P denotes the closure of Ḃα,qp,P with respect to ‖ · ‖Ḃα,qp,P
.

As usual, we have the duality for Ḃα,q
p,P as follows.

Theorem 1.8. Let |α| < ε
4 .

(a) For 1 ≤ p, q ≤ ∞ and each g ∈ Ḃ−α,q
′

p′,P , the mapping Lg : f 7→
∫
Rn+1 f(x)g(x)dν(x),

defined initially on Ḃα,qp,P , extends to a bounded linear functional on Ḃα,q
p,P and satisfies

‖Lg‖ . ‖g‖Ḃ−α,q′
p′,P

.

(b) Conversely, for 1 ≤ p, q <∞, every bounded linear functional L on Ḃα,q
p,P can be realized

as L = Lg with g ∈ Ḃ−α,q
′

p′,P and ‖g‖
Ḃ−α,q

′
p′,P

. ‖L‖.

Remark 1.9. When 0 < α < ε
4 and p = q = ∞, it follows from [13, Theorem 3.1] that Ḃα,∞

∞,P
and LipαP , the Lipschitz spaces associated with parabolic sections, coincide. It was proved in [13,

Theorem 1.1] that LipαP agree with the Campanato spaces which can be viewed as the duals of

Hardy spaces associated with parabolic sections ([13, Theorem 1.5]). Therefore, the Besov spaces

Ḃα,q
p,P introduced here generalize Lipschitz spaces LipαP .

Finally, we give an embedding theorem for Ḃα,q
p,P . To show the embedding theorem, we need

a lower bound condition on the measure ν; that is, there exist two positive constants ω and C

such that, for any parabolic section Q ∈ P,

(1.14) Crω ≤ ν(Q(z, r)) for all r > 0, z ∈ Rn+1.
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The lower bound conditions on the measure had been intensively studied when the underlying

spaces are Riemannian manifolds. To be more precise, let (M, g) be a complete non-compact

Riemannian manifold of dimension n having non-negative curvature, and µ denote the canonical

Riemannian measure on M . It follows from the celebrated Bishop-Gromov comparison theorem

(cf. [3]) that µ(B(x, 2r)) ≤ 2nµ(B(x, r)). In this setting, the measure with lower bound condition

is related to Sobolev-type inequality, the isoperimetric inequality and Poincaré’s inequality. For

more details, see [16, Chapter 3.1] (especially Theorems 3.1.1 and 3.1.2). See also [5].

Theorem 1.10. Suppose that the measure ν satisfies (1.14). Let ε be given by (1.9). For

− ε
4 < α1 < α2 <

ε
4 , 1 ≤ p2 < p1 ≤ ∞, α2 − ω

p2
= α1 − ω

p1
, and 1 ≤ q ≤ ∞, the embedding map

Ḃα2,q
p2,P ↪→ Ḃα1,q

p1,P is continuous.

The embedding theorem for Besov spaces on spaces of homogeneous type was proved by Han

[10] under the assumption µ(B(x, r)) ≈ r. It was proved in [9] that if the Sobolev embedding

theorem holds in Ω ⊂ Rn, in any of possible cases, then Ω satisfies the measure density condition;

that is, there exists a constant c > 0 such that |B(x, r)∩Ω| ≥ crn for all x ∈ Ω and all 0 < r ≤ 1.

Hence, it is reasonable to add condition (1.14) in our hypothesis.

The organization is as follows. We construct an approximation to the identity associated with

P in the next section. Section 3 is devoted to the proofs of Calderón-type reproducing formulae

on test function spaces Ḃα,qp,P and its dual. We discuss the dense subspace of Besov spaces Ḃα,q
p,P

and their duals in section 4. The embedding theorem is proved in the last section. We use a∧ b
and a ∨ b to denote min{a, b} and max{a, b}, respectively. The notation f(x) . g(x) is used

to indicate that f(x) ≤ Cg(x) for some C > 0. And the notation f(x) ≈ g(x) denotes both

f(x) . g(x) and g(x) . f(x).

2. Existence of the approximation to the identity

In this section, we construct an approximation of the identity in the sense of Definition 1.2.

As mentioned before, the idea comes from Coifman and Weiss. Let ψ : R 7→ [0, 1] be a smooth

function which is 1 on (−1, 1) and vanishes on (−∞,−2) ∪ (2,∞). We define

Uk(f)(z) =

∫
Rn+1

ψ(2kρ(z, w))f(w)dν(w), k ∈ Z.

Let Mk be the operator of multiplication by Mk(z) := 1
Uk(1)(z)

and Wk be the operator of

multiplication by Wk(z) :=
[
Uk
(

1
Uk(1)

)
(z)
]−1

. Then

(a) Uk(1)(z) ≈ ν(Q(z, 2−k)) := Vk(z). Indeed,

Uk(1)(z) ≤
∫
ρ(z,w)≤21−k

dν(w) ≤ ν(Q(z, 21−k)) . ν(Q(z, 2−k)).

Conversely,

Uk(1)(z) ≥
∫
ρ(z,w)<2−k

dν(w) = ν(Q(z, 2−k)).
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(b) Vk(z) ≈ Vk(w) whenever ρ(z, w) ≤ A325−k. Here and in what follows, we always use A

to denote the constant given in (1.10).

We prove Vk(z) . Vk(w) only since the reverse estimate is similar. By (1.8) and (1.9),

it is easy to see that Q(z, 2−k) ⊂ Bd(z, θ2
1−k) ⊂ Bρ(z, cθ2

1−k), where the constant c is

given in (1.9). If ρ(z, w) ≤ A325−k, then for any z̄ ∈ Q(z, 2−k),

ρ(z̄, w) ≤ A(ρ(z̄, z) + ρ(z, w)) ≤ A(cθ21−k +A325−k) < A(cθ +A3)25−k,

which implies Q(z, 2−k) ⊂ Bρ(w,A(cθ +A3)25−k). By (1.8) and (1.9) again, we have

Q(z, 2−k) ⊂ Bd(w, cA(cθ +A3)25−k) ⊂ Q(w, cA(cθ +A3)25−k).

The doubling condition (1.5) of ν with respect to parabolic sections yields

Vk(z) ≤ ν(Q(w, cA(cθ +A3)25−k)) . ν(Q(w, 2−k)) = Vk(w).

(c) Uk
(

1
Uk(1)

)
(z) ≈ 1 for all k ∈ Z. Immediately, properties (a) and (b) give

Uk

(
1

Uk(1)

)
(z) ≈

∫
Rn+1

ψ(2kρ(z, w))
1

Vk(w)
dν(w)

≈ 1

Vk(z)

∫
Rn+1

ψ(2kρ(z, w))dν(w)

≈ 1.

Set Sk = MkUkWkUkMk. Then the kernel of Sk is

(2.1) Sk(z, w) =

∫
Rn+1

Mk(z)ψ(2kρ(z, u))Wk(u)ψ(2kρ(u,w))Mk(w)dν(u),

where (z, w) ∈ Rn+1 ×Rn+1, and the sequence of operators {Sk}k∈Z is an approximation to the

associated with parabolic sections.

Lemma 2.1. The kernels Sk(z, w) of operators Sk, given by (2.1), satisfy the following proper-

ties:

(i) Sk(z, w) = Sk(w, z);

(ii) Sk(z, w) = 0 if ρ(z, w) > A22−k and |Sk(z, w)| . 1

Vk(z) + Vk(w)
;

(iii) |Sk(z, w)− Sk(z′, w)| . (2kρ(z, z′))ε

Vk(z) + Vk(w)
for ρ(z, z′) ≤ A325−k;

(iv) |Sk(z, w)− Sk(z, w′)| .
(2kρ(w,w′))ε

Vk(z) + Vk(w)
for ρ(w,w′) ≤ A325−k;

(v)
∣∣[Sk(z, w)− Sk(z′, w)]− [Sk(z, w

′)− Sk(z′, w′)]
∣∣ . (2kρ(z, z′))ε(2kρ(w,w′))ε

Vk(z) + Vk(w)
for ρ(z, z′) ≤ A325−k and ρ(w,w′) ≤ A325−k;

(vi)

∫
Rn+1

Sk(z, w)dν(z) = 1 for all w ∈ Rn+1;

(vii)

∫
Rn+1

Sk(z, w)dν(w) = 1 for all z ∈ Rn+1.
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Proof. Property (i) is obvious since ρ(z, w) = ρ(w, z). (ii) If Sk(z, w) 6= 0, then ρ(z, u) ≤ 21−k

and ρ(u,w) ≤ 21−k, and hence ρ(z, w) ≤ A22−k. That is, Sk(z, w) = 0 when ρ(z, w) > A22−k.

The definition of Mk and property (c) give

|Sk(z, w)| ≤ 1

Uk(1)(z)

1

Uk(1)(w)

∫
ρ(z,u)≤21−k

ψ(2kρ(z, u))Wk(u)ψ(2kρ(u,w))dν(u)

.
1

Vk(z)

1

Vk(w)
ν(Q(z, 21−k))

.
1

Vk(w)
,

which implies |Sk(z, w)| . 1
Vk(z)+Vk(w)

whenever ρ(z, w) ≤ A22−k.

For (iii), we write

Sk(z, w)− Sk(z′, w)

=

∫
Rn+1

[Mk(z)ψ(2kρ(z, u))−Mk(z
′)ψ(2kρ(z′, u))]Wk(u)ψ(2kρ(u,w))Mk(w)dν(u)

=

∫
Rn+1

[Mk(z)−Mk(z
′)]ψ(2kρ(z, u))Wk(u)ψ(2kρ(u,w))Mk(w)dν(u)

+

∫
Rn+1

Mk(z
′)[ψ(2kρ(z, u))− ψ(2kρ(z′, u))]Wk(u)ψ(2kρ(u,w))Mk(w)dν(u)

:= I1 + I2.

To estimate I1, we use property (a) to obtain

|Mk(z)−Mk(z
′)| = |Uk(1)(z′)− Uk(1)(z)|

Uk(1)(z′)Uk(1)(z)
≈ |Uk(1)(z′)− Uk(1)(z)|

Vk(z′)Vk(z)
.

By the definition of Uk(1)(z),

Uk(1)(z′)− Uk(1)(z) =

∫
Rn+1

ψ(2kρ(z′, w))− ψ(2kρ(z, w))dν(w).

The above integrand ψ(2kρ(z′, w))− ψ(2kρ(z, w)) is supported on Bρ(z, 2
1−k) ∪Bρ(z′, 21−k). If

ρ(z, z′) ≤ A325−k, then Bρ(z, 2
1−k) ∪Bρ(z′, 21−k) ⊂ Bρ(z′, A425−k) and

|Uk(1)(z′)− Uk(1)(z)| ≤
∫
Bρ(z′,A425−k)

|ψ(2kρ(z′, w))− ψ(2kρ(z, w))|dν(w).

Note that, for w ∈ Bρ(z
′, A425−k), we have ρ(z, w) ≤ A(ρ(z, z′) + ρ(z′, w)) < A526−k. Since

|ρ(z, u)− ρ(w, u)| ≤ c(ρ(z, w))ε[ρ(z, u) + ρ(w, u)]1−ε,

|ψ(2kρ(z, w))− ψ(2kρ(z′, w))| . 2k(ρ(z, z′))ε[ρ(z, w) + ρ(z′, w)]1−ε

. 2k2−k(1−ε)(ρ(z, z′))ε(2.2)

= (2kρ(z, z′))ε.

For ρ(z, z′) ≤ A325−k, the above (2.2) and doubling condition of ν give

|Uk(1)(z′)− Uk(1)(z)| . (2kρ(z, z′))εν(Bρ(z
′, A425−k)) . Vk(z

′)(2kρ(z, z′))ε,
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which yields

(2.3) |Mk(z)−Mk(z
′)| . (2kρ(z, z′))ε

1

Vk(z)
.

Hence, the support condition of ψ gives

|I1| ≤ |Mk(z)−Mk(z
′)|Mk(w)

∫
Bρ(z,21−k)∩Bρ(w,21−k)

ψ(2kρ(z, u))Wk(u)ψ(2kρ(u,w))dν(u).

If ρ(z, w) > A22−k, Bρ(z, 2
1−k) ∩Bρ(w, 21−k) = ∅ implies I1 = 0. If ρ(z, w) ≤ A22−k, property

(b) shows Vk(z) ≈ Vk(w), and then

|I1| . (2kρ(z, z′))ε
1

Vk(z) + Vk(w)
.

In any case,

|I1| . (2kρ(z, z′))ε
1

Vk(z) + Vk(w)
provided ρ(z, z′) ≤ A325−k.

A similar argument to the estimate of I1 shows that

|I2| ≤Mk(z
′)Mk(w)

∫
Rn+1

|ψ(2kρ(z, u))− ψ(2kρ(z′, u))|Wk(u)ψ(2kρ(u,w))dν(u)

. (2kρ(z, z′))ε
1

Vk(w)

. (2kρ(z, z′))ε
1

Vk(z) + Vk(w)
for ρ(z, z′) ≤ A325−k.

The proof of (iv) is similar to (iii).

To verify (v), we write

[Sk(z, w)− Sk(z′, w)]− [Sk(z, w
′)− Sk(z′, w′)]

=

∫
Rn+1

[Mk(z)ψ(2kρ(z, u))−Mk(z
′)ψ(2kρ(z′, u))]Wk(u)

× [ψ(2kρ(u,w))Mk(w)− ψ(2kρ(u,w′))Mk(w
′)]dν(u)

=

∫
Rn+1

[Mk(z)−Mk(z
′)]ψ(2kρ(z, u))Wk(u)[ψ(2kρ(u,w))− ψ(2kρ(u,w′))]Mk(w)dν(u)

+

∫
Rn+1

[Mk(z)−Mk(z
′)]ψ(2kρ(z, u))Wk(u)ψ(2kρ(u,w′))[Mk(w)−Mk(w

′)]dν(u)

+

∫
Rn+1

Mk(z
′)[ψ(2kρ(z, u))− ψ(2kρ(z′, u))]Wk(u)

× [ψ(2kρ(u,w))− ψ(2kρ(u,w′))]Mk(w)dν(u)

+

∫
Rn+1

Mk(z
′)[ψ(2kρ(z, u))− ψ(2kρ(z′, u))]Wk(u)ψ(2kρ(u,w′))[Mk(w)−Mk(w

′)]dν(u)

:= J1 + J2 + J3 + J4.
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To estimate J1, we use (2.2) and (2.3) for ρ(z, z′) ≤ A325−k and ρ(w,w′) ≤ A325−k combined

with the support condition of ψ to get

|J1| . (2kρ(z, z′))ε(2kρ(w,w′))ε
1

Vk(z) + Vk(w)
.

Similarly, for ρ(z, z′) ≤ A325−k and ρ(w,w′) ≤ A325−k,

|J2|+ |J3|+ |J4| . (2kρ(z, z′))ε(2kρ(w,w′))ε
1

Vk(z) + Vk(w)
.

For (vi),∫
Sk(z, w)dν(z) =

∫ (∫
ψ(2kρ(u, z))Mk(z)dν(z)

)
Wk(u)ψ(2kρ(u,w))Mk(w)dν(u)

=

∫ [
Uk

( 1

Uk(1)

)
(u)

]
Wk(u)ψ(2kρ(u,w))Mk(w)dν(u)

= Mk(w)

∫
ψ(2kρ(u,w))dν(u)

= Mk(w)Uk(1)(w) = 1,

and (vii) is obtained by the same argument. �

Remark 2.2. According to Lemma 2.1 (ii) and the fact Dk = Sk − Sk−1, it is easy to check∫
Rn+1

|Dk(x, y)|dν(x) .
∫
ρ(x,y)≤A23−k

1

Vk(x) + Vk(y)
dν(x) ≤ C for each y,

which implies that Dk is bounded on L1
ν . Similarly,∫

Rn+1

|Dk(x, y)|dν(y) ≤ C for each x,

which implies the L∞ν -boundedness of Dk. By interpolation, each Dk is bounded on Lpν for

1 ≤ p ≤ ∞.

Lemma 2.3. Let {Sk}k∈Z be an approximation to the identity associated with P on (Rn+1, ρ, ν)

and set Dk = Sk − Sk−1. Then

|DjDk(z, w)| . 2−|j−k|ε
1

Vj∧k(z) + Vj∧k(w)
χ{(z,w): ρ(z,w)≤A224−(j∧k)}.

Proof. By (ii) of Lemma 2.1, it is easy to check that DjDk(z, w) = 0 whenever ρ(z, w) >

A224−(j∧k). For k ≥ j, we use vanishing condition of Dk and Lemma 2.1 (ii), (iv) to get

|DjDk(z, w)| ≤
∫
ρ(u,w)≤A23−k

|Dj(z, u)−Dj(z, w)||Dk(u,w)|dν(u)

.
∫
ρ(u,w)≤A23−k

(
2jρ(u,w)

)ε 1

Vj(w)

1

Vk(w)
dν(u)

. 2−(k−j)ε
1

Vj(w)
.
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Similarly, for k < j, the vanishing condition of Dj and Lemma 2.1 (ii), (iii) show

|DjDk(z, w)| ≤
∫
ρ(z,u)≤A23−j

|Dj(z, u)||Dk(u,w)−Dk(z, w)|dν(u)

.
∫
ρ(z,u)≤A23−j

1

Vj(z)

(
2kρ(u, z)

)ε 1

Vk(z)
dν(u)

. 2−(j−k)ε
1

Vk(z)
.

Since Vk(z) ≈ Vk(w) when ρ(z, w) ≤ A224−k, the proof is finished. �

By Lemma 2.1 (ii) and Lemma 2.3, we immediately have the following result.

Lemma 2.4. Let {Sk}k∈Z be an approximation to the identity associated with P on (Rn+1, ρ, ν)

and set Dk = Sk − Sk−1. For 1 ≤ p ≤ ∞, ‖DjDk‖Lpν 7→Lpν . 2−|j−k|ε. Moreover,

‖DjD
N
k ‖Lpν 7→Lpν .

∑
|s|≤N

2−|j−k−s|ε and ‖DN
k Dj‖Lpν 7→Lpν .

∑
|s|≤N

2−|j−k−s|ε.

By plugging p = 2 into Lemma 2.4, the Cotlar-Stein lemma says

‖RN (f)‖L2
ν
. 2−Nε‖f‖L2

ν

and then T−1N =
∑∞

m=0(RN )m is bounded on L2
ν . This yields

(2.4) I =
∑
k∈Z

T−1N DN
k Dk =

∑
k∈Z

DN
k DkT

−1
N in L2

ν ,

which is (1.11).

To see that Dk(f) is well-defined for f ∈ (Ḃα,qp,P)′, we need the following lemma.

Lemma 2.5. Let {Sj}j∈Z be an approximation to the identity associated with P on (Rn+1, ρ, ν)

and Dj = Sj − Sj−1. For |α| < ε
4 and 1 ≤ p, q ≤ ∞, both Dj(·, w) and Dj(z, ·) belong to Ḃα,qp,P

for all z, w ∈ Rn+1 and j ∈ Z.

Proof. Since Dj(·, w) = Dj(w, ·) for any fixed w ∈ Rn+1, it suffices to verify the lemma for

Dj(·, w). Note that

D`(Dj(·, w))(z) =

∫
Rn+1

D`(z, u)Dj(u,w)dν(u) = D`Dj(z, w).

By Lemma 2.3,

‖D`(Dj(·, w))‖L∞ν . 2−|j−`|ε
1

Vj(w)

and

‖D`(Dj(·, w))‖L1
ν
. 2−|j−`|ε.

For 1 < p <∞, the interpolation theorem implies

‖D`(Dj(·, w))‖Lpν ≤ ‖D`(Dj(·, w))‖
1− 1

p

L∞ν
‖D`(Dj(·, w))‖

1
p

L1
ν
. 2−|j−`|εVj(w)

1
p
−1
.
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Combining above estimates, we obtain

‖Dj(·, w)‖Ḃα,qp,P =

{∑
`∈Z

(
2`α‖D`(Dj(·, w))‖Lpν

)q} 1
q

. (Vj(w))
1
p
−1
{∑
`∈Z

2`αq2−|j−`|εq
} 1
q

= 2jα(Vj(w))
1
p
−1
{∑
`≤j

2−(j−`)(α+ε)q +
∑
`>j

2(`−j)(α−ε)q
} 1
q

. 2jα(Vj(w))
1
p
−1

and the proof follows. �

Remark 2.6. Using the same argument in the proof of Lemma 2.5, we can show that if f ∈
C1(Rn+1) with compact support and ∫

Rn+1

f(z)dν(z) = 0,

then f ∈ Ḃα,qp,P for |α| < ε
4 and 1 ≤ p, q ≤ ∞.

3. Calderón-type reproducing formulae for Ḃα,qp,P and their duals

In this section, we are going to show Theorems 1.3 and 1.5, which are the Calderón-type

reproducing formula for Ḃα,qp,P and their duals, respectively.

Proof of Theorem 1.3. We prove the first equality in (1.11) in Ḃα,qp,P only because the proof for

the second one is similar. Choose a large number N ∈ N at least satisfying 2
1−2−ε/4 2−Nε/4 < 1.

We claim that there exists C0 > 0 such that

(3.1) ‖RN (f)‖Ḃα,qp,P ≤ C0N
3
2 2−N( ε

4
−|α|)‖f‖Ḃα,qp,P .

Since f =
∑

k′∈Z T
−1
N DN

k′Dk′(f) in L2
ν (N will be chosen later), there is a subsequence (written

in the same indices for simplicity) convergence almost everywhere and hence

DkRN (f)(z) = DkRN

(∑
k′∈Z

T−1N DN
k′Dk′(f)

)
(z)

= DkRN
∑
k′∈Z

∞∑
m=0

(RN )mDN
k′Dk′(f)(z)

=
∑
k′∈Z

∞∑
m=0

Dk(RN )m+1DN
k′Dk′(f)(z).

(3.2)

Plugging RN =
∑

k∈Z
∑
|`|>N Dk+`Dk, we rewrite

Dk(RN )m+1DN
k′
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= Dk

( ∑
k0∈Z

∑
|`0|>N

Dk0+`0Dk0

)
· · ·
( ∑
km∈Z

∑
|`m|>N

Dkm+`mDkm

)
DN
k′

=
∑
k0∈Z

∑
|`0|>N

∑
k1∈Z

∑
|`1|>N

· · ·
∑
km∈Z

∑
|`m|>N

DkDk0+`0Dk0Dk1+`1Dk1 · · ·Dkm+`mDkmD
N
k′ .

Lemma 2.4 gives

‖DkDk0+`0Dk0Dk1+`1Dk1 · · ·Dkm−1Dkm+`mDkmD
N
k′‖Lpν 7→Lpν

. 2−|k−k0−`0|ε2−|k0−k1−`1|ε · · · 2−|km−1−km−`m|ε
( ∑
|s|≤N

2−|km−k
′−s|ε

)
.

On the other hand, Remark 2.2 shows

‖DkDk0+`0Dk0Dk1+`1Dk1 · · ·Dkm−1Dkm+`mDkmD
N
k′‖Lpν 7→Lpν

. N‖Dk0+`0Dk0Dk1+`1Dk1 · · ·Dkm−1Dkm+`mDkm‖Lpν 7→Lpν

. N2−|`0|ε2−|`1|ε · · · 2−|`m−1|ε2−|`m|ε.

Taking the geometric average of these two estimates, we get

‖DkDk0+`0Dk0Dk1+`1Dk1 · · ·Dkm+`mDkmD
N
k′‖Lpν 7→Lpν

. N
1
2 2−|k−k0−`0|

ε
2 2−|`0|

ε
2 · · · 2−|km−1−km−`m| ε2 2−|`m|

ε
2

( ∑
|s|≤N

2−|km−k
′−s|ε

) 1
2
.

Hence,

‖Dk(RN )m+1DN
k′‖Lpν 7→Lpν . N

1
2

∑
k0∈Z

∑
|`0|>N

· · ·
∑
km∈Z

∑
|`m|>N

∑
|s|≤N

2−|k−k0−`0|
ε
2

× 2−|`0|
ε
2 · · · 2−|km−1−km−`m| ε2 2−|`m|

ε
2 2−|km−k

′−s| ε
2

. N
1
2

∑
|s|≤N

2−|k−k
′−s| ε

4

( 2

1− 2−
ε
4

2−
Nε
4

)m+1
.

(3.3)

Since 2

1−2−
ε
4

2−
Nε
4 < 1, both (3.2) and (3.3) give

‖DkRN (f)‖Lpν ≤
∑
k′∈Z

∞∑
m=0

‖Dk(RN )m+1DN
k′‖Lpν 7→Lpν‖Dk′(f)‖Lpν

. N
1
2

∑
k′∈Z

∞∑
m=0

∑
|s|≤N

2−|k−k
′−s| ε

4

( 2

1− 2−
ε
4

2−
Nε
4

)m+1
‖Dk′(f)‖Lpν

. N
1
2 2−

Nε
4

∑
k′∈Z

∑
|s|≤N

2−|k−k
′−s| ε

4 ‖Dk′(f)‖Lpν .

(3.4)

Therefore, for 1 ≤ q <∞,

‖RN (f)‖Ḃα,qp,P . N
1
2 2−

Nε
4

{∑
k∈Z

(
2kα

∑
k′∈Z

∑
|s|≤N

2−|k−k
′−s| ε

4 ‖Dk′(f)‖Lpν
)q} 1

q
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= N
1
2 2−

Nε
4

{∑
k∈Z

(∑
k′∈Z

∑
|s|≤N

2−|k−k
′−s| ε

4
+(k−k′−s)α2sα2k

′α‖Dk′(f)‖Lpν
)q} 1

q

.

Hölder’s inequality gives

‖RN (f)‖Ḃα,qp,P . N
1
2 2−

Nε
4

{∑
k∈Z

(∑
k′∈Z

∑
|s|≤N

2−|k−k
′−s| ε

4
+(k−k′−s)α2sα

) q
q′

×
(∑
k′∈Z

∑
|s|≤N

2−|k−k
′−s| ε

4
+(k−k′−s)α2sα(2k

′α‖Dk′(f)‖Lpν )q
)} 1

q

.

(In case q = 1, the part
(∑

k′∈Z
∑
|s|≤N 2−|k−k

′−s| ε
4
+(k−k′−s)α2sα

)q/q′
is understood to equal 1

and the same remark applies in similar places later on.) Since |α| < ε
4 ,∑

k′∈Z
2−|k−k

′−s| ε
4
+(k−k′−s)α ≤ C

and then

‖RN (f)‖Ḃα,qp,P ≤ CN
1
2 2−

Nε
4

( ∑
|s|≤N

2sα
){∑

k′∈Z

(
2k
′α‖Dk′(f)‖Lpν

)q} 1
q

≤ C1N
3
2 2−N( ε

4
−|α|)‖f‖Ḃα,qp,P .

(3.5)

While q =∞, inequality (3.4) implies

2kα‖DkRN (f)‖Lpν ≤ CN
1
2 2−

Nε
4

∑
k′∈Z

∑
|s|≤N

2−|k−k
′−s| ε

4 2(k−k
′−s)α2sα2k

′α‖Dk′(f)‖Lpν

≤ CN
1
2 2−

Nε
4

( ∑
|s|≤N

2sα
)

sup
k′∈Z

2k
′α‖Dk′(f)‖Lpν

≤ C2N
3
2 2−N( ε

4
−|α|)‖f‖Ḃα,∞p,P for all k ∈ Z.

(3.6)

Hence claim (3.1) is proved by setting C0 = max{C1, C2}, where the constants C1 and C2 are

given in (3.5) and (3.6), respectively. We now choose a bigger N such that

max

{
2

1− 2−
ε
4

2−
Nε
4 , C0N

3
2 2−N( ε

4
−|α|)

}
< 1.

Notice that T−1N = (I −RN )−1 =
∑∞

m=0(RN )m, so (3.1) implies

(3.7) ‖T−1N (f)‖Ḃα,qp,P ≤
1

1− C0N
3
2 2−N( ε

4
−|α|)
‖f‖Ḃα,qp,P := λN‖f‖Ḃα,qp,P .

Then
∑

k∈Z T
−1
N DN

k Dk(f) belongs to Ḃα,qp,P for f ∈ Ḃα,qp,P . In order to prove that
∑

k∈Z T
−1
N DN

k Dk(f)

converges to f in Ḃα,qp,P , we observe

f(x)−
∑
|k|≤M

T−1N DN
k Dk(f)(x) =

∑
|k|>M

T−1N DN
k Dk(f)(x) for f ∈ L2

ν .

Thus, we only need to make sure that

(3.8) lim
M→∞

∥∥∥∥ ∑
|k|>M

T−1N DN
k Dk(f)

∥∥∥∥
Ḃα,qp,P

= 0.
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For 1 ≤ p ≤ ∞ and 1 ≤ q <∞, by (3.7),∥∥∥∥ ∑
|k|>M

T−1N DN
k Dk(f)

∥∥∥∥
Ḃα,qp,P

. λN

{∑
`∈Z

2`αq
( ∑
|k|>M

‖D`D
N
k Dk(f)‖Lpν

)q} 1
q

≤ λN
{∑
`∈Z

2`αq
( ∑
|k|>M

‖D`D
N
k ‖Lpν 7→Lpν‖Dk(f)‖Lpν

)q} 1
q

.

Lemma 2.4 and Hölder’s inequality imply∥∥∥∥ ∑
|k|>M

T−1N DN
k Dk(f)

∥∥∥∥
Ḃα,qp,P

. λN

{∑
`∈Z

( ∑
|k|>M

∑
|s|≤N

2−|`−k−s|ε2(`−k−s)α2sα2kα‖Dk(f)‖Lpν
)q} 1

q

. λN

{∑
`∈Z

( ∑
|k|>M

∑
|s|≤N

2−|`−k−s|ε2(`−k−s)α2sα
) q
q′

×
( ∑
|k|>M

∑
|s|≤N

2−|`−k−s|ε2(`−k−s)α2sα2kαq‖Dk(f)‖q
Lpν

)} 1
q

.

Therefore, ∥∥∥∥ ∑
|k|>M

T−1N DN
k Dk(f)

∥∥∥∥
Ḃα,qp,P

. λN
( ∑
|s|≤N

2sα
){ ∑
|k|>M

2kαq‖Dk(f)‖q
Lpν

} 1
q

. N2N |α|λN

{ ∑
|k|>M

2kαq‖Dk(f)‖q
Lpν

} 1
q

.

The assumption of f ∈ Ḃα,qp,P shows that the right hand side of the above inequality goes to 0 as

M →∞. Thus, the first equality in (1.11) holds for 1 ≤ q <∞. If q =∞, by the monotonicity

of `q and the fact Ḃα,qp,P ⊂ Ḃ
α,∞
p,P , we also have

lim
M→∞

∥∥∥∥ ∑
|k|>M

T−1N DN
k Dk(f)

∥∥∥∥
Ḃα,∞p,P

= 0.

Hence, the proof is finished. �

We now prove Theorem 1.5.

Proof of Theorem 1.5. For g ∈ Ḃα,qp,P and f ∈
(
Ḃα,qp,P

)′
, Theorem 1.3 says

(3.9) 〈f, g〉 =

〈
f,
∑
k∈Z

T−1N DN
k Dk(g)

〉
=
∑
k∈Z

〈
f, T−1N DN

k Dk(g)
〉
,

where T−1N = (I − RN )−1 =
∑∞

m=0(RN )m, RN =
∑
|k−j|>N DkDj , and DN

k =
∑
|j|≤N Dj+k.

Since these T−1N , RN and DN
k are combinations of Dk, it suffices to claim

(3.10)
〈
f,Dk(g)

〉
=
〈
Dk(f), g

〉
for g ∈ Ḃα,qp,P , f ∈

(
Ḃα,qp,P

)′
.

Assuming the claim for the moment, we have〈
f,Dk′+`Dk′(RN )m−1DN

k Dk(g)
〉

=
〈
Dk′+`(f), Dk′(RN )m−1DN

k Dk(g)
〉
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=
〈
Dk′Dk′+`(f), (RN )m−1DN

k Dk(g)
〉
.

Since RN can be expressed to be RN =
∑

k′∈Z
∑
|`|>N Dk′+`Dk′ =

∑
k′∈Z

∑
|`|>N Dk′Dk′+`, we

take the summation
∑

k′∈Z
∑
|`|>N on both sides to obtain〈

f,RN (RN )m−1DN
k Dk(g)

〉
=
〈
RN (f), (RN )m−1DN

k Dk(g)
〉
.

Repeating the same process m times, we obtain〈
f, T−1N DN

k Dk(g)
〉

=
〈
T−1N (f), DN

k Dk(g)
〉

and then 〈
f, T−1N DN

k Dk(g)
〉

=
〈
DkD

N
k T
−1
N (f), g

〉
,

which and (3.9) give us

〈f, g〉 =
∑
k∈Z

〈
DkD

N
k T
−1
N (f), g

〉
.

The first equality of (1.13) can be obtained similarly.

We now return to the proof of claim (3.10), which contains three steps:

Step 1. Show that each Dk is bounded on Ḃα,qp,P for all |α| < ε
4 and 1 ≤ p, q ≤ ∞.

Step 2. Show that 〈f,Dk(g)〉 = 〈Dk(f), g〉 for all f ∈ (Ḃα,qp,P)′ and g ∈ Ḃα,qp,P ∩ L
p
ν .

Step 3. Show that Ḃα,qp,P ⊂ Lpν ∩ Ḃα,qp,P , where Lpν ∩ Ḃα,qp,P denotes the closure of Lpν ∩ Ḃα,qp,P with

respect to ‖ · ‖Ḃα,qp,P .

To prove step 1, we use Theorem 1.3 to write

‖Dk(f)‖Ḃα,qp,P =

{∑
`∈Z

2`αq
∥∥∥D`Dk

(∑
k′∈Z

DN
k′Dk′T

−1
N (f)

)∥∥∥q
Lpν

} 1
q

≤
{∑
`∈Z

2`αq
(∑
k′∈Z
‖D`DkD

N
k′‖Lpν 7→Lpν‖Dk′T

−1
N (f)‖Lpν

)q} 1
q

.

Lemma 2.4 and Remark 2.2 give

‖D`DkD
N
k′‖Lpν 7→Lpν . N2−|`−k|ε

and

‖D`DkD
N
k′‖Lpν 7→Lpν .

∑
|s|≤N

2−|k−k
′−s|ε.

Taking the geometric average of these two estimates yields

‖D`DkD
N
k′‖Lpν 7→Lpν . N

1
2 2−|`−k|

ε
2

( ∑
|s|≤N

2−|k−k
′−s|ε

) 1
2

≤ N
1
2

∑
|s|≤N

2−|`−k|
ε
2 2−|k−k

′−s| ε
2

≤ N
1
2

∑
|s|≤N

2−|`−k
′−s| ε

2 .

(3.11)



19

For 1 ≤ q <∞, Hölder’s inequality and (3.7) show that

‖Dk(f)‖Ḃα,qp,P . N
1
2

{∑
`∈Z

2`αq
(∑
k′∈Z

∑
|s|≤N

2−|`−k
′−s| ε

2 ‖Dk′T
−1
N (f)‖Lpν

)q} 1
q

. N
1
2

( ∑
|s|≤N

2sα
){∑

k′∈Z
2k
′αq‖Dk′T

−1
N (f)‖q

Lpν

} 1
q

. N
3
2 2N |α|‖T−1N (f)‖Ḃα,qp,P

. N
3
2 2N |α|λN‖f‖Ḃα,qp,P .

If q =∞, using Theorem 1.3, (3.11) and (3.7), we get

2`α‖D`Dk(f)‖Lpν . N
1
2

∑
|s|≤N

2sα
∑
k′∈Z

2(`−k
′−s)α−|`−k′−s| ε

2 2k
′α‖Dk′T

−1
N (f)‖Lpν

. N
3
2 2N |α| sup

k′∈Z
2k
′α‖Dk′T

−1
N (f)‖Lpν

= N
3
2 2N |α|‖T−1N (f)‖Ḃα,∞p,P

. N
3
2 2N |α|λN‖f‖Ḃα,∞p,P ,

and hence

‖Dk(f)‖Ḃα,∞p,P . N
3
2 2N |α|λN‖f‖Ḃα,∞p,P .

To show step 2, for g ∈ Ḃα,qp,P ∩ L
p
ν , we define

gk,M (x) =

∫
Q(0,M)

Dk(x, y)g(y)dν(y), M > 0,

where Q(0,M) denotes the section {y ∈ Rn+1 : ρ(0, y) < M}. By step 1,

‖Dk(g)− gk,M‖Ḃα,qp,P = ‖Dk(gχRn+1\Q(0,M))‖Ḃα,qp,P . N
3
2 2N |α|λN‖gχRn+1\Q(0,M)‖Ḃα,qp,P .

We claim that

lim
M→∞

‖gχRn+1\Q(0,M)‖Ḃα,qp,P = 0.

Indeed, by Remark 2.2 and Lebesgue dominated convergence theorem,

‖Dk(gχRn+1\Q(0,M))‖Lpν . ‖gχRn+1\Q(0,M)‖Lpν → 0 as M →∞.

For ρ(x, y) ≤ A23−k and ρ(0, y) ≥M , the triangle inequality (1.10) implies

ρ(0, x) ≥ 1

A
ρ(0, y)− ρ(x, y) ≥ M

A
−A23−k,

which yields

|Dk(gχRn+1\Q(0,M))(x)| =
∣∣∣∣ ∫

Rn+1\Q(0,M)
Dk(x, y)g(y)dν(y)

∣∣∣∣
≤ |Dk(g)(x)|χRn+1\Q(0,M

A
−A23−k)(x)

≤ |Dk(g)(x)|.
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Thus, ‖Dk(gχRn+1\Q(0,M))‖Lpν ≤ ‖Dk(g)‖Lpν and the series
∑

k∈Z 2kαq‖Dk(gχRn+1\Q(0,M))‖
q
Lpν

converges. Hence, given ε > 0, there exists a large number K such that∑
|k|>K

2kαq‖Dk(gχRn+1\Q(0,M))‖
q
Lpν
< ε.

On the other hand,∑
|k|≤K

2kαq‖Dk(gχRn+1\Q(0,M))‖
q
Lpν
.
∑
|k|≤K

2kαq‖gχRn+1\Q(0,M)‖
q
Lpν

= ‖gχRn+1\Q(0,M)‖
q
Lpν

2−Kαq
(
1− 2αq(2K+1)

)
1− 2αq

→ 0 as M →∞.

Then

lim
M→∞

∑
k∈Z

2kαq‖Dk(gχRn+1\Q(0,M))‖
q
Lpν

= 0

and the claim is proved. Therefore,

〈f,Dk(g)〉 = lim
M→∞

〈f, gk,M 〉.(3.12)

Since {int Q(z, 2−(k+J))}z∈Q(0,M) is an open covering of Q(0,M), there exist finite many sections

{Q(zj , 2
−(k+J))}NJj=1, zj ∈ Q(0,M), such that Q(0,M) ⊂

⋃NJ
j=1Q(zj , 2

−(k+J)). Let

Q1 = Q(0,M)
⋂
Q(z1, 2

−(k+J));

Q2 = Q(0,M)
⋂
Q(z2, 2

−(k+J))\Q1;

Q3 = Q(0,M)
⋂
Q(z3, 2

−(k+J))\(Q1 ∪Q2);
...

QNJ = Q(0,M)
⋂
Q(zNJ , 2

−(k+J))\
⋃NJ−1
j=1 Qj .

Then {Qj}NJj=1 are disjoint and
⋃NJ
j=1Qj = Q(0,M). Now we write

gk,M (x) =

NJ∑
j=1

∫
Qj

Dk(x, y)g(y)dν(y)

=

NJ∑
j=1

∫
Qj

(Dk(x, y)−Dk(x, yj))g(y)dν(y) +

NJ∑
j=1

Dk(x, yj)

∫
Qj

g(y)dν(y)

:= g1k,M,J(x) + g2k,M,J(x),

where yj is any point in Qj . To consider ‖g1k,M,J‖Ḃα,qp,P , the second difference smoothness condition

(v) in Lemma 2.1 will be used. For simplicity, we denote by

Hk,j(x, y) = (Dk(x, y)−Dk(x, yj))χQj (y).

Then Hk,j(x, y) satisfies the following conditions

(a) suppHk,j(·, y) ⊂ Q(y, 16A22−k) and suppHk,j(x, ·) ⊂ Q(x, 8A2−k);

(b)

∫
Rn+1

Hk,j(x, y)dν(x) = χQj (y)

∫ (
Dk(x, y)−Dk(x, yj)

)
dν(x) = 0;
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(c) |Hk,j(x, y)| . 2−Jε
1

Vk(x) + Vk(y)
;

(d) |Hk,j(x, y)−Hk,j(x
′, y)| . 2−Jε(2kρ(x, x′))ε

1

Vk(x) + Vk(y)
,

where x′ satisfies ρ(x, x′) ≤ 32A32−k. Under the above conditions (a)–(d), using a similar

argument to the proof of Lemma 2.1 and Lemma 2.3, we obtain that for all k, ` ∈ Z and

x, y ∈ Rn+1,

supp(D`Hk,j)(·, y) ⊂ Q(y, 32A3(2−` ∨ 2−k));(3.13)

supp(D`Hk,j)(x, ·) ⊂ Q(x, 16A2(2−` ∨ 2−k));(3.14)

|D`Hk,j(x, y)| . 2−Jε2−|`−k|ε
1

V`∧k(x) + V`∧k(y)
.(3.15)

Set

H(x, y) =

NJ∑
j=1

(D`Hk,j)(x, y).

By (3.14), (3.15) and doubling condition on measure ν,∫
Rn+1

|H(x, y)|dν(y) ≤
NJ∑
j=1

∫
Qj∩Q(x,16A2(2−`∨2−k))

|(D`Hk,j)(x, y)|dν(y)

. 2−Jε2−|`−k|ε
NJ∑
j=1

∫
Qj∩Q(x,16A2(2−`∨2−k))

dν(y)

V`∧k(x) + V`∧k(y)

. 2−Jε2−|`−k|ε.

Similarly, (3.13) and (3.15) yield∫
Rn+1

|H(x, y)|dν(x) . 2−Jε2−|`−k|ε.

The above two inequalities imply

‖D`(g
1
k,M,J)‖Lpν . 2−Jε2−|`−k|ε‖g‖Lpν , 1 ≤ p ≤ ∞,

which shows that, for 1 ≤ q <∞,

‖g1k,M,J‖Ḃα,qp,P . 2−Jε
{∑
`∈Z

2`αq2−|`−k|εq
} 1
q

‖g‖Lpν

. 2−Jε2kα‖g‖Lpν
→ 0 as J →∞.

(3.16)

For q =∞, the fact Ḃα,qp,P ⊂ Ḃ
α,∞
p,P shows

‖g1k,M,J‖Ḃα,∞p,P → 0 as J →∞.(3.17)

By (3.12), (3.16), (3.17) and Lemma 2.5,

〈f,Dkg〉 = lim
M→∞

lim
J→∞

〈f, g2k,M,J〉 = lim
M→∞

lim
J→∞

NJ∑
j=1

Dk(f)(yj)

∫
Qj

g(y)dν(y),(3.18)
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where we use Lemma 2.1 (i) to know Dk(x, y) = Dk(y, x). We now write

NJ∑
j=1

Dk(f)(yj)

∫
Qj

g(y)dν(y) =

NJ∑
j=1

∫
Qj

Dk(f)(y)g(y)dν(y)

+

∫
Rn+1

NJ∑
j=1

{(
Dk(f)(yj)−Dk(f)(y)

)
χQj (y)

}
g(y)dν(y).

Notice that∣∣(Dk(yj , x)−Dk(y, x)
)
χQj (y)

∣∣ =
∣∣(Dk(x, yj)−Dk(x, y)

)
χQj (y)

∣∣ = |Hk,j(x, y)|

and

‖Hk,j(·, y)‖Ḃα,qp,P =

{∑
s∈Z

2sαq‖DsHk,j(·, y)‖q
Lpν

} 1
q

. 2−Jε2kα
{∑
s∈Z

2(s−k)αq2−|s−k|εq
} 1
q

(Vk(y))
1
p
−1

. 2−Jε2kα(Vk(y))
1
p
−1

→ 0 as J →∞.

Then, for f ∈ (Ḃα,qp,P)′,∣∣(Dk(f)(yj)−Dk(f)(y)
)
χQj (y)

∣∣ =

∣∣∣∣ ∫ (Dk(yj , x)−Dk(y, x)
)
χQj (y)f(x)dν(x)

∣∣∣∣
≤
∥∥(Dk(yj , ·)−Dk(y, ·)

)
χQj

∥∥
Ḃα,qp,P
‖f‖(Ḃα,qp,P )′

→ 0 as J →∞.

The Lebesgue dominated convergence theorem shows that

lim
J→∞

∫
Rn+1

NJ∑
j=1

{(
Dk(f)(yj)−Dk(f)(y)

)
χQj (y)

}
g(y)dν(y) = 0,

which together with (3.18) shows

〈f,Dk(g)〉 = lim
M→∞

lim
J→∞

NJ∑
j=1

∫
Qj

Dk(f)(y)g(y)dν(y) =

∫
Rn+1

Dk(f)(y)g(y)dν(y) = 〈Dk(f), g〉.

For the proof of step 3, given g ∈ Ḃα,qp,P , let

g̃k,M (x) =

∫
Q(0,M)

DN
k (x, y)DkT

−1
N (g)(y)dν(y), M > 0.

Then g̃k,M ∈ Lpν ∩ Ḃα,qp,P . It follows from Theorem 1.3 that∥∥∥∥g − ∑
|k|≤M

g̃k,M

∥∥∥∥
Ḃα,qp,P

=

∥∥∥∥g − ∑
|k|≤M

DN
k DkT

−1
N (g)χQ(0,M)

∥∥∥∥
Ḃα,qp,P

→ 0 as M →∞.

Hence, claim (3.10) is proved, and the proof of Theorem 1.5 is completed. �
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4. Besov spaces associated with sections

We now apply the Calderón-type reproducing formula (1.11) in L2
ν to prove that the definition

of Ḃα,qp,P is independent of the choice of approximations to the identity.

Theorem 4.1. Let |α| < ε
4 and 1 ≤ p, q ≤ ∞. Suppose that {Sk}k∈Z and {Pk}k∈Z are

approximations to the identity associated with P on (Rn+1, ρ, ν). Set Dk = Sk − Sk−1 and

Ek = Pk − Pk−1. Then, for f ∈ L2
ν ,{∑

k∈Z

(
2kα‖Dk(f)‖Lpν

)q} 1
q

≈
{∑
k′∈Z

(
2k
′α‖Ek′(f)‖Lpν

)q} 1
q

if 1 ≤ q <∞;

sup
k∈Z

2kα‖Dk(f)‖Lpν ≈ sup
k′∈Z

2k
′α‖Ek′(f)‖Lpν if q =∞.

Proof. For f ∈ L2
ν , we have f =

∑
k′∈ZE

N
k′Ek′T

−1
N (f) in L2

ν . Hence, there exists a subsequence

(we write the same indices for simplicity) such that f =
∑

k′∈ZE
N
k′Ek′T

−1
N (f) almost everywhere.

Then

Dk(f) =
∑
k′∈Z

DkE
N
k′Ek′T

−1
N (f),

and Lemma 2.4 yields

‖Dk(f)‖Lpν ≤
∑
k′∈Z
‖DkE

N
k′ ‖Lpν 7→Lpν‖Ek′T

−1
N (f)‖Lpν

.
∑
k′∈Z

∑
|s|≤N

2−|k−k
′−s|ε‖Ek′T−1N (f)‖Lpν .

(4.1)

For 1 ≤ q <∞, Hölder’s inequality, (3.7) and (4.1) show that{∑
k∈Z

(
2kα‖Dk(f)‖Lpν

)q} 1
q

.

{∑
k∈Z

(∑
k′∈Z

∑
|s|≤N

2−|k−k
′−s|ε+(k−k′−s)α2sα

) q
q′

×
(∑
k′∈Z

∑
|s|≤N

2−|k−k
′−s|ε+(k−k′−s)α2sα2k

′αq‖Ek′T−1N (f)‖q
Lpν

)} 1
q

.
( ∑
|s|≤N

2sα
){∑

k′∈Z
2k
′αq‖Ek′T−1N (f)‖q

Lpν

} 1
q

. N2N |α|‖T−1N (f)‖Ḃα,qp,P

. N2N |α|λN

{∑
k′∈Z

(
2k
′α‖Ek′(f)‖Lpν

)q} 1
q

.
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While q =∞, using (3.7) and (4.1) again, we get

2kα‖Dk(f)‖Lpν .
∑
k′∈Z

∑
|s|≤N

2−|k−k
′−s|ε+(k−k′−s)α2sα2k

′α‖Ek′T−1N (f)‖Lpν

. N2N |α|‖T−1N (f)‖Ḃα,∞p,P

. N2N |α|λN sup
k′∈Z

2k
′α‖Ek′(f)‖Lpν for all k ∈ Z.

Similarly, we have the reverse inequalities. �

Lemma 4.2. Let |α| < ε
4 and 1 ≤ p, q ≤ ∞. If f ∈ Ḃα,qp,P , then f ∈

(
Ḃ−α,q

′

p′,P
)′

and

‖f‖
(Ḃ−α,q

′
p′,P )′

. N2N |α|λN‖f‖Ḃα,qp,P .

Proof. Let {Sk}k∈Z be an approximation to the identity associated with P on (Rn+1, ρ, ν) and

Dk = Sk − Sk−1. Given f ∈ Ḃα,qp,P and g ∈ Ḃ−α,q
′

p′,P , Theorem 1.3 gives f =
∑

k∈ZD
N
k DkT

−1
N (f)

and Hölder’s inequality shows

|〈f, g〉| =
∣∣∣∣∫

Rn+1

∑
k∈Z

DkT
−1
N (f)(z)DN

k (g)(z)dν(z)

∣∣∣∣
≤
∑
k∈Z
‖DkT

−1
N (f)‖Lpν‖D

N
k (g)‖

Lp
′
ν

≤
{∑
k∈Z

2kαq‖DkT
−1
N (f)‖q

Lpν

} 1
q
{∑
k∈Z

2−kαq
′‖DN

k (g)‖q
′

Lp
′
ν

} 1
q′

.

Since DN
k =

∑
|j|≤N Dk+j , we have{∑
k∈Z

2−kαq
′‖DN

k (g)‖q
′

Lp
′
ν

} 1
q′

≤
{∑
k∈Z

2−kαq
′
( ∑
|j|≤N

‖Dk+j(g)‖
Lp
′
ν

)q′} 1
q′

≤
∑
|j|≤N

2jα
{∑
k∈Z

2−(k+j)αq
′‖Dk+j(g)‖q

′

Lp
′
ν

} 1
q′

. N2N |α|‖g‖Ḃ−α,q′
p′,P

.

Thus, we apply (3.7) to obtain

(4.2) |〈f, g〉| . N2N |α|λN‖f‖Ḃα,qp,P‖g‖Ḃ−α,q′p′,P

and hence

‖f‖
(Ḃ−α,q

′
p′,P )′

. N2N |α|λN‖f‖Ḃα,qp,P ,

which completes the proof. �

We now are ready to show Theorem 1.7.
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Proof of Theorem 1.7. To prove Ḃα,q
p,P ⊂ Ḃ

α,q
p,P , given f ∈ Ḃα,q

p,P , we will find a sequence of functions

in Ḃα,qp,P such that this sequence converges to f in Ḃα,q
p,P . Lemma 2.5 and Theorem 1.5 yield

Dk(f)(x) = 〈Dk(x, ·), f〉

=

〈
Dk(x, ·),

∑
k′∈Z

T−1N Dk′D
N
k′ (f)

〉
= Dk

(∑
k′∈Z

T−1N Dk′D
N
k′ (f)

)
(x) almost everywhere,

which implies

DkRN (f)(z) = Dk

∑
k0∈Z

∑
|`0|>N

Dk0+`0Dk0(f)(z)

= Dk

∑
k0∈Z

∑
|`0|>N

Dk0+`0Dk0

(∑
k′∈Z

T−1N Dk′D
N
k′ (f)

)
(z).

Thus,

DkRN (f)(z)

=
∑
k′∈Z

∞∑
m=0

Dk

( ∑
k0∈Z

∑
|`0|>N

Dk0+`0Dk0

)
· · ·
( ∑
km∈Z

∑
|`m|>N

Dkm+`mDkm

)
Dk′D

N
k′ (f)(z)

=
∑
k′∈Z

∞∑
m=0

∑
k0∈Z

∑
|`0|>N

· · ·
∑
km∈Z

∑
|`m|>N

DkDk0+`0Dk0 · · ·Dkm+`mDkmDk′D
N
k′ (f)(z).

Since the norms of Ḃα,qp,P and Ḃα,q
p,P are the same, the same argument as the proof of (3.1) shows

‖RN (f)‖Ḃα,qp,P
≤ C0N

3
2 2−N( ε

4
−|α|)‖f‖Ḃα,qp,P

.

Hence TN is bounded on Ḃα,q
p,P as well, so TN (g) =

∑
kDkD

N
k (g) belongs to Ḃα,q

p,P provided

g ∈ Ḃα,q
p,P . Using the fact that T−1N = (I −RN )−1 =

∑∞
m=0(RN )m, we obtain

(4.3) ‖T−1N (f)‖Ḃα,qp,P
≤ λN‖f‖Ḃα,qp,P

and then
∑

kDkD
N
k T
−1
N (f) belongs to Ḃα,q

p,P . In order to prove that
∑

kDkD
N
k T
−1
N (f) converges

to f in Ḃα,q
p,P , we apply Lemma 2.5 and Theorem 1.5 again to get

Dk(f) = Dk

(∑
k′∈Z

Dk′D
N
k′T
−1
N (f)

)
almost everywhere.

Hence

Dk

(
f −

∑
|k′|≤M

Dk′D
N
k′T
−1
N (f)

)
= Dk

( ∑
|k′|>M

Dk′D
N
k′T
−1
N (f)

)
almost everywhere,

and ∥∥∥∥f − ∑
|k′|≤M

Dk′D
N
k′T
−1
N (f)

∥∥∥∥
Ḃα,qp,P

=

∥∥∥∥ ∑
|k′|>M

Dk′D
N
k′T
−1
N (f)

∥∥∥∥
Ḃα,qp,P

.
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The same argument as the proof of (3.8) gives

(4.4)

∥∥∥∥f − ∑
|k′|≤M

Dk′D
N
k′T
−1
N (f)

∥∥∥∥
Ḃα,qp,P

→ 0 as M →∞.

Define fk,M by

fk,M (z) =

∫
Q(0,M)

Dk(z, w)
(
DN
k T
−1
N (f)

)
(w)dν(w), M > 0.

Then fk,M ∈ Ḃα,qp,P because of Remark 2.6. The above (4.4) gives∥∥∥∥f − ∑
|k|≤M

fk,M

∥∥∥∥
Ḃα,qp,P

→ 0 as M →∞.

To show Ḃα,qp,P ⊂ Ḃα,q
p,P , let {fm}m∈N ⊂ Ḃα,qp,P be a Cauchy sequence with respect to the norm

‖ ·‖Ḃα,qp,P
. We will show that there is an f ∈ Ḃα,q

p,P such that fm converges to f in Ḃα,q
p,P as m→∞.

By Lemma 4.2,

‖fn − fm‖(Ḃ−α,q′
p′,P )′

. N2N |α|λN‖fn − fm‖Ḃα,qp,P ,

which says that {fm}m∈N is also a Cauchy sequence in
(
Ḃ−α,q

′

p′,P
)′

with respect to the norm

‖ · ‖
(Ḃ−α,q

′
p′,P )′

and ‖fm‖Ḃα,qp,P
≤ C. Since

(
Ḃ−α,q

′

p′,P
)′

is a Banach space (see [23, p. 111]), there exists

an f ∈
(
Ḃ−α,q

′

p′,P
)′

such that

‖fm − f‖(Ḃ−α,q′
p′,P )′

→ 0 as m→∞.

It follows from Lemma 2.5 that

|Dk(fm − f)(z)| ≤ ‖Dk(z, ·)‖Ḃ−α,q′
p′,P
‖fm − f‖(Ḃ−α,q′

p′,P )′
,

which implies

(4.5) lim
m→∞

Dk(fm)(z) = Dk(f)(z).

By Fatou’s lemma and (4.5),

‖f‖Ḃα,qp,P
≤ lim inf

m→∞
‖fm‖Ḃα,qp,P

≤ C,

which shows f ∈ Ḃα,q
p,P . Applying Lebesgue dominated convergence theorem, we obtain that fm

converges to f in Ḃα,q
p,P . �

To study the dual of Ḃα,q
p,P , we need the following lemma.

Lemma 4.3. Let {Sk}k∈Z be an approximation to the identity associated with P on (Rn+1, ρ, ν)

and Dk = Sk −Sk−1. For |α| < ε
4 and 1 ≤ p, q ≤ ∞, if a sequence of functions {gk}k∈Z satisfies∥∥{2kα‖gk‖Lpν}k∈Z∥∥`q <∞, then
∑

k∈ZDk(gk) ∈ Ḃα,q
p,P and∥∥∥∥∑

k∈Z
Dk(gk)

∥∥∥∥
Ḃα,qp,P

.
∥∥{2kα‖gk‖Lpν}k∈Z∥∥`q .
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Proof. For m1,m2 ∈ Z with m1 < m2, define gm2
m1

=
∑m2

k=m1
Dk(gk). Given f ∈ Ḃ−α,q

′

p′,P , Hölder’s

inequality yields

|〈gm2
m1
, f〉| ≤

m2∑
k=m1

|〈gk, Dk(f)〉|

≤
{ m2∑
k=m1

(
2kα‖gk‖Lpν

)q} 1
q
{ m2∑
k=m1

(
2−kα‖Dk(f)‖

Lp
′
ν

)q′} 1
q′

≤
{ m2∑
k=m1

(
2kα‖gk‖Lpν

)q} 1
q

‖f‖Ḃ−α,q′
p′,P

,

which shows gm2
m1
∈
(
Ḃ−α,q

′

p′,P
)′

and

‖gm2
m1
‖
(Ḃ−α,q

′
p′,P )′

≤
{ m2∑
k=m1

(
2kα‖gk‖Lpν

)q} 1
q

.

If we set g =
∑

k∈ZDk(gk), then g ∈
(
Ḃ−α,q

′

p′,P
)′

as well. Using Lemma 2.4 and Hölder’s inequality,

we get ∑
j∈Z

(
2jα‖Dj(g)‖Lpν

)q
≤
∑
j∈Z

(
2jα
∑
k∈Z
‖DjDk(gk)‖Lpν

)q
.
∑
j∈Z

(∑
k∈Z

2(j−k)α−|j−k|ε2kα‖gk‖Lpν
)q

.
∑
k∈Z

2kαq‖gk‖qLpν ,

which completes the proof. �

Proof of Theorem 1.8. (a) follows from Theorem 1.7 and (4.2). For (b), given a bounded linear

functional L on Ḃα,q
p,P , by Theorem 1.7 again, L is also a bounded linear functional on Ḃα,qp,P and

|L(f)| ≤ ‖L‖‖f‖Ḃα,qp,P for f ∈ Ḃα,qp,P .

Let {Sk}k∈Z be an approximation to the identity associated with P and set Dk = Sk − Sk−1.
Then, for each f ∈ Ḃα,qp,P , {Dk(f)}k∈Z belongs to the sequence space

`αq (Lpν) =

{
{fk}k∈Z : ‖{fk}k∈Z‖`αq (Lpν) :=

(∑
k∈Z

2kαq‖fk‖qLpν
) 1
q
<∞

}
.

Define L0 on a subset of `αq (Lpν) by

L0
(
{Dk(f)}k∈Z

)
= L(f) for f ∈ Ḃα,qp,P .

Hence,

|L0
(
{Dk(f)}k∈Z

)
| ≤ ‖L‖‖f‖Ḃα,qp,P = ‖L‖‖{Dk(f)}k∈Z‖`αq (Lpν).
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The Hahn-Banach theorem shows that L0 can be extended to a functional L0 on `αq (Lpν). Since

(`αq (Lpν))′ = `−αq′ (Lp
′
ν ) for 1 ≤ p, q < ∞ (see [18, page 178]), there exists a unique sequence

{gk}k∈Z ∈ `−αq′ (Lp
′
ν ) such that

L0({fk}k∈Z) =
∑
k∈Z
〈fk, gk〉 for all {fk}k∈Z ∈ `αq (Lpν)

and

‖{gk}k∈Z‖`−α
q′ (Lp

′
ν )
. ‖L0‖ ≤ ‖L‖.

For f ∈ Ḃα,qp,P , we have

L(f) = L0({Dk(f)}k∈Z) =
∑
k∈Z
〈Dk(f), gk〉 =

∑
k∈Z
〈f,Dk(gk)〉 =

〈
f,
∑
k∈Z

Dk(gk)

〉
.

Let g =
∑

k∈ZDk(gk). Lemma 4.3 says that g ∈ Ḃ−α,q
′

p′,P and

‖g‖
Ḃ−α,q

′
p′,P

. ‖{gk}k∈Z‖`−α
q′ (Lp

′
ν )
. ‖L‖.

This completes the proof. �

5. Proof of the embedding theorem for Ḃα,q
p,P

Proof of Theorem 1.10. Let p1 and p2 satisfy the assumption of Theorem 1.10. Set 1
r = 1

p2
− 1

p1
,

then 1
p2

+ 1
r′ = 1 + 1

p1
. By Lemma 2.3,∫

|D`Dk(x, y)|r′dν(x) .
∫
Q(y,16A2(2−`∨2−k))

2−|k−`|εr
′
( 1

V`∧k(x) + V`∧k(y)

)r′
dν(x).

The doubling property and the lower bound condition (1.14) on the measure ν give∫
|D`Dk(x, y)|r′dν(x) . 2−|k−`|εr

′(
V`∧k(y)

)1−r′
. 2−|k−`|εr

′
(2−`ω ∨ 2−kω)1−r

′
.

Similarly, ∫
|D`Dk(x, y)|r′dν(y) . 2−|k−`|εr

′
(2−`ω ∨ 2−kω)1−r

′
.

For f ∈ Ḃα2,q
p2,P , Young’s inequality yields

‖D`DkD
N
k T
−1
N (f)‖Lp1ν

.
(
2−|k−`|εr

′
(2−`ω ∨ 2−kω)1−r

′) 1
p1

(
2−|k−`|εr

′
(2−`ω ∨ 2−kω)1−r

′)1− 1
p2 ‖DN

k T
−1
N (f)‖Lp2ν

=
(
2−|k−`|εr

′
(2−`ω ∨ 2−kω)1−r

′) 1
r′ ‖DN

k T
−1
N (f)‖Lp2ν

= 2−|k−`|ε(2−`ω ∨ 2−kω)
1
p1
− 1
p2 ‖DN

k T
−1
N (f)‖Lp2ν .

(5.1)

When 1 ≤ q <∞, we use Theorem 1.5 to get

‖f‖Ḃα1,qp1,P
=

{∑
`∈Z

2α1`q
∥∥∥D`

(∑
k

DkD
N
k T
−1
N (f)

)∥∥∥q
L
p1
ν

} 1
q
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.

{∑
`∈Z

2α1`q
(∑
k∈Z

2−|k−`|ε(2−`ω ∨ 2−kω)
1
p1
− 1
p2 ‖DN

k T
−1
N (f)‖Lp2ν

)q} 1
q

≤
{∑
`∈Z

2α1`q
(∑
k>`

2−(k−`)ε2
−`ω( 1

p1
− 1
p2

)‖DN
k T
−1
N (f)‖Lp2ν

)q} 1
q

+

{∑
`∈Z

2α1`q
(∑
k≤`

2−(`−k)ε2
−kω( 1

p1
− 1
p2

)‖DN
k T
−1
N (f)‖Lp2ν

)q} 1
q

:= I + J.

For I, the condition ω
p1
− ω

p2
= α1 − α2 shows

I =

{∑
`∈Z

2α1`q
(∑
k>`

2−(k−`)ε2−`(α1−α2)‖DN
k T
−1
N (f)‖Lp2ν

)q} 1
q

=

{∑
`∈Z

(∑
k>`

2−(k−`)ε+(`−k)α22kα2‖DN
k T
−1
N (f)‖Lp2ν

)q} 1
q

.

Hölder’s inequality and |α2| < ε
4 imply

I .

{∑
`∈Z

∑
k>`

2−(k−`)ε+(`−k)α22kα2q‖DN
k T
−1
N (f)‖q

L
p2
ν

} 1
q

=

{∑
k∈Z

(∑
`<k

2−(k−`)(ε+α2)
)

2kα2q‖DN
k T
−1
N (f)‖q

L
p2
ν

} 1
q

.

{∑
k∈Z

2kα2q‖DN
k T
−1
N (f)‖q

L
p2
ν

} 1
q

.

Minkowski’s inequality and (4.3) give

I .

{∑
k∈Z

2kα2q
( ∑
|s|≤N

‖Dk+sT
−1
N (f)‖Lp2ν

)q} 1
q

.
∑
|s|≤N

2−sα2

{∑
k∈Z

2(k+s)α2q‖Dk+sT
−1
N (f)‖q

L
p2
ν

} 1
q

. N2N |α2|‖T−1N (f)‖Ḃα2,qp2,P

.
N2N |α2|

1−N
3
2 2−N( ε

4
−|α2|)

‖f‖Ḃα2,qp2,P
.

For J , we use the conditions ω
p1
− ω

p2
= α1 − α2, |α1| < ε

4 and Hölder’s inequality to get

J =

{∑
`∈Z

(∑
k≤`

2−(`−k)ε+α1(`−k)2kα2‖DN
k T
−1
N (f)‖Lp2ν

)q} 1
q

≤
{∑
`∈Z

(∑
k≤`

2−(`−k)ε+α1(`−k)
) q
q′
(∑
k≤`

2−(`−k)ε+α1(`−k)2kα2q‖DN
k T
−1
N (f)‖q

L
p2
ν

)} 1
q
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.

{∑
k∈Z

(∑
`≥k

2−(`−k)(ε−α1)
)

2kα2q‖DN
k T
−1
N (f)‖q

L
p2
ν

} 1
q

.

{∑
k∈Z

2kα2q‖DN
k T
−1
N (f)‖q

L
p2
ν

} 1
q

.

By Minkowski’s inequality and (4.3) again,

J .
∑
|s|≤N

2−sα2

{∑
k∈Z

2(k+s)α2q‖Dk+sT
−1
N (f)‖q

L
p2
ν

} 1
q

. N2N |α2|‖T−1N (f)‖Ḃα2,qp2,P

.
N2N |α2|

1−N
3
2 2−N( ε

4
−|α2|)

‖f‖Ḃα2,qp2,P
.

While q =∞, it follows from Minkowski’s inequality, Theorem 1.5, and (5.1) that

2α1`‖D`(f)‖Lp1ν ≤ 2α1`
(∑
k∈Z
‖D`DkD

N
k T
−1
N (f)‖Lp1ν

)
. 2α1`

(∑
k∈Z

2−|k−`|ε(2−`ω ∨ 2−kω)
1
p1
− 1
p2 ‖DN

k T
−1
N (f)‖Lp2ν

)
.

Since ω
p1
− ω

p2
= α1 − α2 and − ε

4 < α1 < α2 <
ε
4 ,

2α1`‖D`(f)‖Lp1ν . 2α1`
(∑
k>`

2−(k−`)ε2−`(α1−α2)‖DN
k T
−1
N (f)‖Lp2ν

)
+ 2α1`

(∑
k≤`

2−(`−k)ε2−k(α1−α2)‖DN
k T
−1
N (f)‖Lp2ν

)
=
∑
k>`

2−(k−`)(ε+α2)2kα2‖DN
k T
−1
N (f)‖Lp2ν

+
∑
k≤`

2−(`−k)(ε−α1)2kα2‖DN
k T
−1
N (f)‖Lp2ν

. sup
k∈Z

2kα2‖DN
k T
−1
N (f)‖Lp2ν .

Applying (4.3) again, we obtain

‖f‖Ḃα1,∞p1,P
= sup

`∈Z
2α1`‖D`(f)‖Lp1ν . sup

k∈Z
2kα2‖DN

k T
−1
N (f)‖Lp2ν

≤
∑
|s|≤N

2−sα2 sup
k∈Z

2(k+s)α2‖Dk+sT
−1
N (f)‖Lp2ν

. N2N |α2|‖T−1N (f)‖Ḃα2,∞p2,P

.
N2N |α2|

1−N
3
2 2−N( ε

4
−|α2|)

‖f‖Ḃα2,∞p2,P
,

and the proof of Theorem 1.10 is completed. �
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