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CHARACTERIZATION OF BESOV SPACES
ASSOCIATED WITH PARABOLIC SECTIONS

MEIFANG CHENG*, CHIN-CHENG LINT, AND MENG QU*

ABSTRACT. We study the Besov spaces associated with a family of parabolic sections which are
closely related to the parabolic Monge-Ampere equation. We demonstrate their duals and an
embedding theorem for these Besov spaces.

1. INTRODUCTION

In 1996, Caffarelli and Gutiérrez [1] studied real variable theory related to the Monge-Ampére
equation. They considered a family of convex sets in R, F = {S(x,t) : z € R", ¢ > 0}, satisfying
certain axioms of affine invariance, and a Borel measure satisfying a doubling condition with
respect to the family F. They developed a Besicovitch-type covering lemma for the family F
and used this covering lemma with the doubling property of the Borel measure mentioned above
to set up a variant of the Calderén-Zygmund decomposition in terms of the members of F. Let
¢ : R™ — R be a strictly convex smooth function and consider the Monge-Ampére measure
p := det D?¢ generated by ¢, where D?¢ denotes the Hessian matrix of ¢. For a given function

u, it is easy to see that
det D*(¢ + tu) = det D*¢ + t tr(® D?u) + ... + t" det D?u,

where ® is the matrix of the cofactors of D?¢ and tr(A) means the trace of the matrix A. For
x € R" and t > 0, Caffarelli and Gutiérrez [1] introduced a family of elliptic sections associated
with ¢ by
Se(z,t) ={y € R" : ¢(y) — ¢(x) — V() - (y —x) <t}

These sets play crucial role in the study of Monge-Ampere equation and the linearized Monge-
Ampere equation Lgu = tr(® D?u) (cf. [2]). In [1], Caffarelli and Gutiérrez generalized Sy(z,t)
to an abstract family of convex sets S(z,t) satisfying properties (A), (B), and (C) given in [1,
page 1078], and we call these S(z,t) to be generalized elliptic sections. The elliptic sections

Se(x,t) associated with ¢ is an example of generalized elliptic sections.
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In 1999, Huang [11] pondered the Harnack inequality for nonnegative solutions of the lin-

earized parabolic Monge-Ampeére equation

(1.1) ug — tr((D?¢(x)) "1 D?*u) = 0,

where u; = %1;, (D%¢(x))~! is the inverse matrix of D?¢(z), and ¢ is a strictly convex smooth

function defined on R” such that det D?¢ dxdt satisfies a certain doubling condition on the
parabolic sections S(z,7r) x (t — ¢ir,t + cor] associated with ¢ and is uniformly absolutely
continuous with respect to Lebesgue measure. More precisely, it was assumed in [11] that
the Monge-Ampere measure p = det D?¢ satisfies the following doubling property in terms of

sections:
(1.2) (S, 1)) < Cu<;S(a:,t)> for all Sz, t),

where C' > 0 and $S5(z,t) denotes i-dilation of S(z,t) with respect to its center of mass. It
was also required in [11] that u satisfies a stronger uniform continuity condition: for any given
01 € (0,1), there exists d2 € (0,1) such that, for any sections S and any measurable subset
ECS,

(1.3) ’,g, < 09 implies 'Z((g)) < 01.

We note that (1.3) implies (1.2). Also, Huang obtained a Besicovitch-type covering lemma
with respect to parabolic sections. Then he considered the parabolic Monge-Ampere measure
M generated by ¢(z) —t, i.e., dM = det D®¢ dxdt, and obtained a variant of the Calderén-
Zygmund decomposition in terms of parabolic sections and M under the uniform continuity
condition on u. Using such a Calderén-Zygmund decomposition, Huang showed an invariant

Harnack’s inequality on parabolic sections as follows.

Theorem 1.1. Let u be a nonnegative classical solution of (1.1) in S(zg, 0R)x (to—3 R, to+2R],
where 0 is a large geometric constant. Then

supu < Cinf u,

Q- +

where QT = S(zo, R) X (to + R,to + 2R] and Q= = S(xo, R) X (to — R, to].

Parabolic sections also appeared in the work of Gutiérrez and Huang [8], where they proved

the WP estimates for the parabolic Monge-Ampere equation
(1.4) —uy det D?*u = f, (z,t) € 2 x (0,T) C R" x R,

with some suitable conditions on f and € being a bounded convex set. Initially (1.4) was intro-
duced by Krylov [12] in 1976. Its connection with maximum principles for parabolic equations
was observed by Krylov, and was developed further by Tso [20] and Nazarov and Ural’tseva
[15]. Equation (1.4) also arose in the work of Tso [19] on the Gauss curvature flow of convex

hypersurfaces. The first initial-boundary value problem for (1.4) was studied by R. H. Wang
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and G. L. Wang [21, 22]. Moreover, Daskalopoulos and Savin [7] obtained a C1® estimate for

the following parabolic Monge-Ampere equation
uy = b(z, t)(det D?u)P, (x,t) e R" x R,

where p > 0 and b(z,t) is a bounded positive measurable function. Recently, Tang [17] inves-
tigated interior estimates of solutions to (1.4) in the case that f satisfies VMO-type condition,
and such VMO spaces are defined in terms of parabolic sections. It is our hope that the spaces
studied in the current paper provide another direction in the investigation of the regularity of

solutions to parabolic Monge-Ampeére equation with initial data in Besov spaces.

We first recall the definition of (generalized) parabolic sections. Suppose that ¢ : [0,00) +—

[0,00) is a monotonic increasing function satisfying

p(0) =0, lim o(r) =oc0,  @(2r) < Cp(r),
where C' is a constant depending on ¢ only. Define the generalized parabolic sections, which will

be called parabolic sections below for simplicity, by

Qp(z,7) = S(x,r) X (t— g0(2r)’t+ 90(271)),

where z = (z,t) € R®" xR, r > 0, and S(x,r) is the generalized elliptic sections. Note that
this definition reduces to the one given in [11] by choosing ¢(r) = r. We will work for a fixed
¢ satisfying the above description through the paper, and hence use Q(z,7) to express Qu(2,1)

for simplicity. An affine transformation T on R™! is said to normalize Q(zo,r) if
1 -
K (0, H) C T(Q(z0,7)) C K(0,1),

where K (z,7) = B(z,r) x (t— %, t+ %), T(x,t) := (T, %), and T is an affine transformation

on R™ normalizing S(z,r); that is,
1
B(o, 7> C T(S(z0,7)) C B(0,1).
n

Here we use B(z,r) to denote the ball in R™ centered at x and with radius r. Note that the

restriction of 7' to t-axis maps (to — @, to + @) onto (—%, %) The family

P={Q(zr): 2= (x,1) €ER" xR, r >0}

of parabolic sections satisfies the following properties (see [11, page 2029]).

(A) There exist positive constants K7, Ko, K3 and £1, €9 such that, given two parabolic sec-
tions Q(z0,70), Q(z,7) in P with r < ry and an affine transformation T that normalizes
Q(z0,70), if

Q(z0,m0) N Q(z,7) # 2,
then there exists 2’ = (2/,t') € K(0, K3), depending only on both Q(zo,r0) and Q(z,7),
satisfying

B (e k(7)) 5 (V3 oy !+ 3y ) <T@




and
T / / 1 T\ c2 !
T(z) = (Tz, ") € B ( fKQ(f) x {t'Y.
2 ro
(B) There exists ¢ > 0 such that, for any parabolic section Q(zo,r) € P and z ¢ Q(zo,r), if
T is an affine transformation that normalizes Q(zo,r), then
K(f(z),e‘) N T(Q(zo, (1—er) =02 for 0 <e<1.
(C) MNrso Qz,7) = {2} and U, Q(z,7) = R
In addition, we also assume that a Borel measure v is given, which is finite on compact sets, no

point mass, v(R"*!) = oo, and satisfies the following doubling property with respect to P; that
is, there exists a constant C, such that

(1.5) Z/(Q(Z, 27")) < C’l,l/(Q(z,r)), VYV Q(z,r) € P.
We note that the parabolic Monge-Ampere measure M using in [11] satisfies (1.5).

Since the parabolic sections are similar to elliptic cylinders, by properties (A) and (B) of
parabolic sections, it is easy to obtain the following engulfing property. There exists a constant
6 > 1, depending only on ¢, K7, and e1, such that for each 2’ € Q(z,r) € P we have

(1.6) Q(z,r) C Q(<,0r) and Q' r) C Q(z,0r).
Define a quasi-metric d on R™*! with respect to P by
d(z,w) =1inf{r: z € Q(w,r) and w € Q(z,7)},

which satisfies the triangle inequality

(1.7) d(z,w) < 0(d(z,u) + d(u, w)) for any z,u,w € R"™,
Also,
(1.8) Q(z, 2%) C By(z,7) C Q(z,7) for any z € R"™ and r > 0,

where By(z,7) := {w € R"" : d(2,w) < r} denotes the d-ball centered at z with radius r. By
(1.5) and (1.8), if we choose kg € N satisfying 2¥0=2 > 6, then

v(By(z,2r)) < C*u(By(z,1)) for any z € R""! and r > 0.
Hence, (R"*1,d, v) is a space of homogeneous type introduced by Coifman and Weiss [4]. Macias

and Segovia [14, Theorems 2] have shown that one can replace d by another quasi-metric p such
that there exist constants ¢ > 1 and € € (0, 1) satisfying

(1.9) cld(z,w) < p(z,w) < cd(z,w) for z,w € R*1;
' () — p(2 )] < clp(e ) F[plzrw) - p(/ w)'=5 for =, 2w € R

By (1.7) and (1.9), it is easy to check that p satisfies the triangle inequality

(1.10) p(z,w) < A(p(z, u) + p(u,w)) for any z,w,u € R,
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where A = ¢?0. Through the paper, we always assume that the quasi-metric p satisfies the

regularity condition (1.9).

Applying Coifman’s idea (cf. [6, page 16]), we can construct an approximation to the identity
associated with P on the space of homogeneous type (R"*!, p,v/), which will be done later in §2,
Lemma 2.1. Here and throughout this paper, Vi (z) always denotes the measure v(Q(z,27%))
for k € Z and z € R"*1,

Definition 1.2. Let p satisfy condition (1.9). A sequence of operators { Sk} ez is said to be an
approzimation to the identity associated with P on the space of homogeneous type (R" Y, p,v) if
there exist positive constants Cy, Ca, C3 such that, for all k € Z and all z, 2/, w, w’ € R"*!, the
kernels S (z,w) of Sy satisfy the following conditions:

(i) Sp(z,w) = 0 if p(z,w) > C127% (which means that each Sj(-,w) is supported on the
section Q(w, C127%) and each Si(z,) is supported on the section Q(z,C127%));

.. Co

(i) [Sk(z,w)| < W§

(2%p(z,2'))°
Vi(2) + Vi(w)
(2% p(w, w'))®
Vie(2) + Vi(w)

(iii) |Sk(z,w) — Sk(2',w)| < Co for p(z,2') < C327F;

(iv) |Sk(z,w) — Sk(z,w")| < Cq for p(w,w') < C327F;

(2%p(z,2))° (2" p(w, w"))*
Vk(z) + Vi (w)

(v) |[Sk(z,w) — Sp(Z',w)] = [Sk(z,w') — Sk(z’,w')]‘ < Oy
for p(z,2') < C327% and p(w,w') < C327F;

(vi) / Sk(z,w)dv(z) =1 for all w € R™™;
Rn+1

(vii) / Sk(z,w)dv(w) =1 for all z € R"*1,
Rn+1

Let Dy = S — Sk_1. Applying Coifman’s decomposition to the identity, we write
oo oo
(I o)(X0)-X ¥ on+Y ¥ nij=Tvens
k=—co j=—o00 k {j:lk—jI<N} k {j:lk—jI>N}
Set D,JCV = z\j\SN Dy j. Then both Ty and Ry can be represented as

Ty =Y DyDy=)Y _ DyDy
k k

and

Ry = Z Z DDy = Z Z Dy Dy,

k |j|>N k |j|>N
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respectively. Using Cotlar-Stein almost orthogonal estimates, one obtains a similar Calderén-

type reproducing formula

(1.11) f= > Ty'DYDu(f)= > DYDTN'(f)

k=—oc0 k=—oc0
in L2(R"*!, dv), where N is a fixed large integer and T ]\_,1 is the inverse of Th. See the argument
of (2.4) below. In the next theorem, we will show that this Calderén-type reproducing formula
still holds for certain subspace of L2(R"! dv).

Theorem 1.3. Let { Sy }rez be an approzimation to the identity associated with P on (R"™1 p v),
set Dy = Sp — Sp—1, and € is the one from (1.9). For |a| < § and 1 < p,q < oo, if
f € L2(R™*! dv) and satisfies that

1/q
(1.12) (Z (ZkaHDk(f)HLg)q) for 1<q< o0
' kez

sup 2% Dy (f)]| 2 for q=oo
kEeZ

is finite, then (1.11) holds with respect to the norm defined by (1.12).

The above theorem leads us to introduce a test function space as follows.

Definition 1.4. Let { Sy }rez be an approximation to the identity associated with P on (R" 1, p, v)
and Dy, = S, — Sp_1 for k € Z. For |a| < § and 1 < p,q < oo, define

Byh ={f e L*R™",dv) : 1 llm < o0},
where

ka q 1 :
> @ De(f)z) if 1<g<oo

||f||z§;~;; = k:ezk
sup 2°*(| Dy (f)]| if ¢=o0
keZ

It is clear that the test function space ng is a subspace of L?(R"*! dv). Applying the
above Calderén-type reproducing formula (1.11), one can show that the test function space
Bz’% is independent of the choice of the approximation to the identity (see Theorem 4.1 below).
Let (B;’f,%)’ denote the dual of B;‘% Note that for each fixed k& and x, the function Dy(z, )
belongs to 5’;"’7‘% for all |a| < £, 1 < p,g < oo (see Lemma 2.5 below), and thus Dy (f) is
well defined for all f € (B;‘ 77%)’ . Moreover, applying the second difference smoothness condition
of the approximation to the identity associated with P on (R"*!, p,v), we will show that the
Calderon-type reproducing formula (1.11) still holds on dual spaces; that is, the following (1.13)
holds.
Theorem 1.5. Under the same assumptions as Theorem 1.3, for each f € (B;%),,

(1'13) <f,g> :Z<T]G1DkD]J€V(f),g> = Z<DkD]iVT]§1(f)vg>a Vge B;%
kez keZ



We now may define the Besov spaces associated with parabolic sections as follows.

Definition 1.6. For |a] < § and 1 < p,q < oo, let p’ and ¢’ denote the conjugate index of p
and ¢, respectively. Suppose that {Sk}rez is an approximation to the identity associated with
P on (R"*!, p,v) and set Dy, = Sp — Sk_1. The Besov spaces associated with P are defined to
be

Bog = {1 e (B5")  1fl oy < oo},

where

keZ
sup 2°|| Dy (f)| .z if ¢=o0
keZ

1/q
( (QkaHDk(f)HLﬁ)q) it 1<q< o0
Hf”Bw = )

It is known that the space of Schwartz functions is dense in the classical Besov space on R™

(see [18, page 48]). We show that the test function space B;i’g is dense in B;i’g as well.

Theorem 1.7. Let |of < § and 1 < p,q < oco. Then

.a7 a?q
Bp, Bp?”

20,4 20, .
where B denotes the closure of B, with respect to || - HB;“;;'

As usual, we have the duality for B;‘ % as follows.
Theorem 1.8. Let |af < §.

(a) For 1 < p,q < oo and each g € B, /73 , the mapping Ly = [ = [gns1 f(2)g(x)dv(z),
defined initially on Bp’%, extends to a bounded linear functional on B;i’;; and satisfies
L4l S Mgl g—oar

o', P .

(b) Conversely, for 1 < p,q < 0o, every bounded linear functional L on B;% can be realized

as L= Lg with g € B;j‘;; and [|g| ; apq S L.

Remark 1.9. When 0 < o < § and p = q = oo, it follows from [13, Theorem 3.1] that Bgoog
and Lip%, the Lipschitz spaces associated with parabolic sections, coincide. It was proved in [13,
Theorem 1.1] that Lip3 agree with the Campanato spaces which can be viewed as the duals of
Hardy spaces associated with parabolic sections ([13, Theorem 1.5]). Therefore, the Besov spaces

B;’% introduced here generalize Lipschitz spaces Lip%p.

Finally, we give an embedding theorem for B;f’g. To show the embedding theorem, we need
a lower bound condition on the measure v; that is, there exist two positive constants w and C'

such that, for any parabolic section @) € P,

(1.14) CrY <v(Q(z,r)) for all > 0,2z € R"*1.



The lower bound conditions on the measure had been intensively studied when the underlying
spaces are Riemannian manifolds. To be more precise, let (M, g) be a complete non-compact
Riemannian manifold of dimension n having non-negative curvature, and p denote the canonical
Riemannian measure on M. It follows from the celebrated Bishop-Gromov comparison theorem
(cf. [3]) that pu(B(z,2r)) < 2"u(B(x,r)). In this setting, the measure with lower bound condition
is related to Sobolev-type inequality, the isoperimetric inequality and Poincaré’s inequality. For
more details, see [16, Chapter 3.1] (especially Theorems 3.1.1 and 3.1.2). See also [5].

Theorem 1.10. Suppose that the measure v satisfies (1.14). Let € be given by (1.9). For

—%<0¢1<a2<%,1§p2<p1§oo,a2—p%:a1—p%, and 1 < q < oo, the embedding map

Bg;”g — B;ll,g is continuous.

The embedding theorem for Besov spaces on spaces of homogeneous type was proved by Han
[10] under the assumption u(B(x,r)) ~ r. It was proved in [9] that if the Sobolev embedding
theorem holds in 2 C R"™, in any of possible cases, then € satisfies the measure density condition;
that is, there exists a constant ¢ > 0 such that |B(z,r)NQ| > ¢r™ forallz € Qand all 0 < r < 1.

Hence, it is reasonable to add condition (1.14) in our hypothesis.

The organization is as follows. We construct an approximation to the identity associated with
P in the next section. Section 3 is devoted to the proofs of Calderén-type reproducing formulae
on test function spaces ng and its dual. We discuss the dense subspace of Besov spaces B; ’g
and their duals in section 4. The embedding theorem is proved in the last section. We use a A b
and a V b to denote min{a, b} and max{a,b}, respectively. The notation f(z) < g(z) is used
to indicate that f(x) < Cg(x) for some C' > 0. And the notation f(x) ~ g(x) denotes both

f(z) < g(2) and g(z) S f(x).
2. EXISTENCE OF THE APPROXIMATION TO THE IDENTITY

In this section, we construct an approximation of the identity in the sense of Definition 1.2.
As mentioned before, the idea comes from Coifman and Weiss. Let ¢ : R — [0, 1] be a smooth
function which is 1 on (—1,1) and vanishes on (—o0, —2) U (2, 00). We define

Ur(f)(2) = Y2 (z,0)) f(w)dv(w), k€ L.

Rn+1

Let Mj be the operator of multiplication by My (z) = Uk(i)(z) and Wy be the operator of

multiplication by Wi (z) := [Uk(ﬁ(l))(z)]_l. Then

(a) Ur(1)(2) = v(Q(z,27%)) := Vi(2). Indeed,
Ue(1)(2) < / dv(w) < v(Q(2,2')) < v(Q(2,27%)).

plzw)<21—K

Conversely,

GE 2 [ ) =r(@E )
plz,w)<2™
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(b) Vi(2) = Vi(w) whenever p(z,w) < A32°7%. Here and in what follows, we always use A
to denote the constant given in (1.10).

We prove Vi(z) < Vi(w) only since the reverse estimate is similar. By (1.8) and (1.9),
it is easy to see that Q(z,27%) C By(z,02'7%) C B,(2,c02'7%), where the constant c is
given in (1.9). If p(z,w) < A3257F then for any z € Q(z,27%),

p(Z,w) < A(p(Z, 2) + p(z,w)) < A(ch2'7F + A3257F) < A(ch + A3)257F,
which implies Q(z,27%) C B,(w, A(cf + A%)257%). By (1.8) and (1.9) again, we have
Q(2,27%) € By(w, cA(ch + A*)2°7F) € Q(w, cA(ch + A3)257F),
The doubling condition (1.5) of v with respect to parabolic sections yields
Vi(2) < v(Q(w, cA(ct + A%)2°7F)) S v(Q(w,27%)) = Vi(w).

(c) U’%‘(Ukl 1))(z) ~ 1 for all k¥ € Z. Immediately, properties (a) and (b) give

1 ~ k Z, W ! viw
0 (o )@~ [, 020t ) vt

~ L k Z,Ww v\w
S o P0G v

~ 1.

Set S, = ML U W,LULM. Then the kernel of S}, is
2.1) Su(evw) = [ M2 (e )W) (20 ) M) (),
where (z,w) € R"™! x R"*! and the sequence of operators {Si }xcz is an approximation to the

associated with parabolic sections.

Lemma 2.1. The kernels Si(z,w) of operators Sk, given by (2.1), satisfy the following proper-

ties:

(i) Sk(z,w) = Sk(w, 2); ,
(i) Sk(z,w) =0 if p(z,w) > A2>7 and |Sy(z, w)| < m%

/ (2%p(2, )" / k.
(iii) |Sk(z,w) — Sk(z,w)| < W for p(z,2") < A325~k;

(
‘ < (2Fp(w,w))®
(iv) [Sk(z,w) = Sk(z,w')[ S m

k "\\e (ok "V \&
(9) [1Sk(zvw) = Sul )] = [Su(ev) = Sy(s' )] 5 FEEIEE )
for p(z,2') < A3257F and p(w,w’) < A3257F; ) ’
(vi) / 1 Sk(z,w)dv(z) =1 for all w € R"H1;

Rn

for plw, w') < A325F;

(vii) Sk(z,w)dv(w) =1 for all z € R™™,

Rn«l»l



10

Proof. Property (i) is obvious since p(z,w) = p(w, ). (ii) If Sk(z,w) # 0, then p(z,u) < 217F
and p(u,w) < 2% and hence p(z,w) < A227F. That is, Si(z,w) = 0 when p(z,w) > A227F.
The definition of M}, and property (c) give

1 1 & &
94 00| S ) TR 0 PP WD 250 )]

11
(2) Vie(w)
1

A
=

v(Q(z,2'7%))

A

which implies |Sk(z,w)| S m whenever p(z,w) < A227F,
For (iii), we write

Sz, w) — Sy, w)

= /R nH[Mk:(Z)w(QkP(Za w)) — My(2)(28p(2, w) | Wi (w) 0 (2 p(u, w) My (w) du(w)
= /R . [My(2) — My (2028 p(z, w)) Wi (w) (28 p(u, w) My (w)dv(w)

+ My ()[(2p(z, ) — 0 (2" p(2', )W ()t (2° p(u, w)) Mip(w)dp(u)

Rn+l

=11 + Is.

To estimate I7, we use property (a) to obtain

o TE) — U] U)(E) — U(1)()
Mez) = Ml = 5 oG~ W)

By the definition of Ug(1)(2),

Ur(1)(2') = Ur(1)(2) = P(2°p(2,w)) — (2 p(z, w))dv(w).

Rn+1
The above integrand (2% p(2',w)) — (2% p(z,w)) is supported on B,(z,2'7%) U B,(#',217F). If
p(z,2') < A3257F then B,(2,2'7%) U B,(/,2'7%) C B,(2/, A*257%) and

Ue(1)(2") = Ur(1)(2)] < / [0(2°p(2", w)) — (2" p(z, w))|dv(w).

B, (x,A425F)
Note that, for w € B,(z', A*257F), we have p(z,w) < A(p(z,2') + p(',w)) < A%26=%. Since
|p(2, 1) — p(w,u)| < e(p(z,w))*[p(2, u) + p(w, w)]' %,
B2 (2, w)) — B (2, w))] S 2X(p(z, 2))F[p(z,w) + pl(o, w)]1 2
(2.2) < 2219y 21))¢
— (2p(z, ).
For p(z,2') < A3257F the above (2.2) and doubling condition of v give

Uk(1)(=") = Us(1)(2)] S (2%p(2, 2))(Bo(2', A12°7%)) < Vi) (2 p(2, ) )7,
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which yields

1

(2.3) | My (2) = Mi(2)| S (2%p(2,2))°
Hence, the support condition of i gives
(1| < |Mi(2) — Mk(Z’)Mk(w)/ (2" plz, 1)) Wi (w)eh (25 p(u, w))dv(u).
Bp(2,2' " F)NBy(w,217F)

If p(z,w) > A227F, B,(2,2'7%) N B,(w,2'"%) = @ implies I; = 0. If p(z,w) < A227* property
(b) shows Vi (2) ~ Vi(w), and then

1

FApS (2’“p(z,z’))5m.

In any case,

1
Vie(2) + Vig(w)

A similar argument to the estimate of I; shows that

11| S (2Fp(z, 2))° provided p(z, 2') < A32°7F,

|Ia| < Mk(Z’)Mk(U))/ [0(2°p(z, w) — (2" p(2', ) [Wi(w)e (2" p(u, w))d (u)

Rn+1

< (2°p(2,2))°

< (2°p(2,2))°

= for p(z, ) < AP,
Vile) + Vi(w) plz7) <

The proof of (iv) is similar to (iii).

To verify (v), we write

Sk(z w Sk(z w)] [Sk(z w) Sk(z' w )]
[Mi(2)9(28p(2, ) = M(2")p(25p(2', 1)) | Wi (u)

Rn+1

X [(2" pu, w)) My (w) — (2% p(u, w')) My (w')]dv (u)

= [ IVLLE) — ML) W) 2 10) — 2t )
[ IVLE) = Ml ) W a2t ) M) — M)
+Awﬂ@ (2110)) = 020l ) W)
Mﬁm ) — (2 pla, 0! )M () )
b 1) — 20l )W 2wV ) — M)

=J1+ Jo+ J3+ Jy.
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To estimate Ji, we use (2.2) and (2.3) for p(z,2') < A3257% and p(w,w’) < A325~F combined
with the support condition of ¢ to get

1] < (25 ples )52 pluw, ! ))F

Vk(z) + Vk(w)'
Similarly, for p(z,2") < A32°7% and p(w,w’) < A3257F,
1

ol + 3]+ 14l S (2°(z, )7 (2 plw ) s

0 (g ) (0| (2ot ) M) )

and (vii) is obtained by the same argument. O

Remark 2.2. According to Lemma 2.1 (ii) and the fact Dy = Sy — Sk_1, it is easy to check
1

Dy(z,y)|dv(z ,S/ ————dv(x) < C for each vy,

/]R"+1 1Di(@, y)ldv () p(wg)<azs—k Vi(z) + Vi(y) (=)

which implies that Dy is bounded on L. Similarly,

[ IDeyliv) <C for cacha,
Rn+1

which implies the LS°-boundedness of Dy. By interpolation, each Dy is bounded on LY, for
I1<p< oo

Lemma 2.3. Let {S}}rez be an approximation to the identity associated with P on (R"*1 p v)
and set Dy, = Sy, — Si_1. Then

1
Vonk(2) Vi) V(e et oy

|D; Dy (z,w)| S 270 7He

Proof. By (ii) of Lemma 2.1, it is easy to check that D;Dj(z,w) = 0 whenever p(z,w) >
A224=UNk) For k > j, we use vanishing condition of D) and Lemma 2.1 (ii), (iv) to get

D;Duzvw)| < [ 1D}z, u) — Dj(z, w)|| Dy, w)]dv()
plu,w)<A23=F
</ CZORT) e —
p(u,w)<A23—k V}(UJ) Vi (w)

1
Vi(w)

< 9—(k—j)e



Similarly, for k£ < j, the vanishing condition of D; and Lemma 2.1 (ii), (iii) show

|D;j Dy (z,w)| < /( s |D;(z,u)||Dg(u, w) — Dy(z,w)|dv(u)
p(zu)<A23—

1 e 1
< 28 p(u, 2 dv(u
~ /p(z,u)<A23_j ‘/J(Z)< p( )) Vk(z> ( )
<o-Gi-ke_ 1
~ Vi(2)
Since Vi (2) ~ Vi, (w) when p(z,w) < A?2*F the proof is finished.

By Lemma 2.1 (ii) and Lemma 2.3, we immediately have the following result.

Lemma 2.4. Let {Si}rez be an approzimation to the identity associated with P on (R"*1, p,
and set Dy, = S, — Sp—1. For 1 <p < oo, | DDyl ppsrr S 2-li=kle . Moreover,

1D gy S 32 2797FFand IDFDylppery S Y0 27
=N S| <N

By plugging p = 2 into Lemma 2.4, the Cotlar-Stein lemma says
IRN(Pllzz S 270N
and then T = >°°°_ (Ry)™ is bounded on L2. This yields

(2.4) I=> Ty'DYDy =) DYD,Ty'  in L2,
keZ keZ
which is (1.11).

To see that Dg(f) is well-defined for f € (B;%)’ , we need the following lemma.

Lemma 2.5. Let {S;};cz be an approzimation to the identity associated with P on (R*L p,

for all z,w € R"! and j € Z.

13

)

)

and Dj = S; — Sj_1. For|a| < § and 1 < p,q < oo, both Dj(-,w) and Dj(z,-) belong to B;’f)

Proof. Since Dj(-,w) = Dj(w,-) for any fixed w € R""! it suffices to verify the lemma for

Dj(-,w). Note that

Dy(Dj(-,w))(2) = » Dy(z,u)Dj(u, w)dv(u) = D¢Dj(z, w).
Rn
By Lemma 2.3,
; 1
1De(Dj (-, w))l| g S 270 ———
’ Vj(w)
and

1De(D; (-, w)) gy S 27971,
For 1 < p < oo, the interpolation theorem implies

1-1 1 ie 1
1De(Dj (-, w))ll g, < I1De(Dj (-, w)) o | De(Dy (- w))7y S 270V (w)e ™
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Combining above estimates, we obtain

1055 w) g, = {Z <2€a||Dg(Dj(-,w))||L{j)q}

Lel

ST zqumq}é

LeZ

1
q

1
- 2j°‘(Vj(w))117_1{ Z 9—(i=O(ate)g 4 Z Q(Z—j)(a—e)Q} !
<y >y
-1

=

< 2%(Vj(w))
and the proof follows. O

Remark 2.6. Using the same argument in the proof of Lemma 2.5, we can show that if f €
CHR™ 1Y) with compact support and

thenfelé’;% forla| < 5 and 1 < p,q < oo.

3. CALDERON-TYPE REPRODUCING FORMULAE FOR Bg’,g AND THEIR DUALS

In this section, we are going to show Theorems 1.3 and 1.5, which are the Calderén-type

reproducing formula for B%% and their duals, respectively.
p,P

Proof of Theorem 1.3. We prove the first equality in (1.11) in B;‘ % only because the proof for
the second one is similar. Choose a large number N € N at least satisfying 1_2%/42*]\7 e/t < 1.
We claim that there exists Cy > 0 such that

(3.1) | RN ()l gog < CoNZ2 NG| f] g0

p,P

Since f =3 s T N DN Dy (f) in L2 (N will be chosen later), there is a subsequence (written

in the same indices for simplicity) convergence almost everywhere and hence

DR (f)(2) = DkRN( S 13D Dk/<f>) (2)

k'eZ

(3.2) = DyRy Z Z(RN)lejc\’]Dk’(fxz)

k’'eZ m=0

=" > Dp(By)" DY Dy (f)(2).
k'eZ m=0

Plugging Ry = ) ;7 Z|£|>N Dy1 ¢ Dy, we rewrite
Dk(RN)m—‘rlD]]C\/f



_ N
- 0140 o T mTEtm m /
Dk<§ N Digse Dk> ( S S DiienDi )Dk

ko€Z |6o|>N kmE€Z |l |>N

- Z Z Z Z Z Z Dy Dyo+to Dko Dy 46, Dy -+ - Diy 0, Diy, Dy -

ko€Z |€o|>N k1€Z |€1|>N Em€Z |bm|>N

Lemma 2.4 gives

N
1Dk Dig+-t0Diig Diy 61 Dy -+ Dy Dyt Do Dt | L2 2

< 2f\kfkof£0|527|kofklf£1|s.“2f|km,1fkmf€m|s< Z 2f|km7k/fs|e)‘
|s|<N

On the other hand, Remark 2.2 shows

N
1Dk Dio-+20 Do Diy +6 Diey * +* Dityy—y Dty 40, D, Dir | L2 12
S N[ Droteo Do D+ Dy *+* Dityy—y Dty 0, Dty | 1212
< No—lboleg=ltle . g=lbm—1leg—|mle

Taking the geometric average of these two estimates, we get

N
1Dk Do -+20 Dro Diy +6 Diy ++* Dityt 0, D Dir | 22,12

1
< N%Q—\k—ko—ﬁoléflfo\%...Q—Ikm_l—km—eml%z—lfml%< Z 2—Il~<rm—l~c’—sls)2

|s|<N
Hence,
1 5
IDK(RN)™ DY oy SN2 D D e Y > > 2 ihehols
ko€Z |lo|>N  km€Z [lm|>N |s|<N
(3.3) w 91015 .. 9= lkm—1—=km—Ltm|5 9= lm|5 o= |km—K'—s|5
1
k—k'—g|& 2 __ Ne m+
VY i (i)
|s|<N et

Since 1_22__22_¥ < 1, both (3.2) and (3.3) give

o0
IDKRN (Pl < DD I1Dk(RN)™ DV | sz 1Dae () 12
k’eZ m=0

(3.4) SNEY Y Y ki (2 )

k' €Zm=0 |s|<N !

SN2 Y0 ST 2RSS Dy ()]

k'€Z |s|<N

Therefore, for 1 < g < oo,

IRy Dl £ 332 {5 (205 52 2 Dulg)’ };

keZ k'€Z |s| <N

15
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1
ho ﬁ{z(z 3 oK —agsaga Dy ()] ) }

kEZ K€L |s|<N
Holder’s inequality gives

HRN< )HBO“Z <N22_{Z<Z Z 9- |k—k'—s|§+(k— k’—s)a2so¢>

ke€Z k'€Z|s|<N

% (Z Z 2kk’s|i+(kk’s)a2sa(2k’a”Dk,(f)HLIV,)!I>} .

K'€Z|s|<N

U

Q=

(In case ¢ = 1, the part (Y ez > jg<n 27“{71«7‘9'%Hk*k/*s)afa)q/q/ is understood to equal 1
and the same remark applies in similar places later on.) Since |af < §,
Z 2—|k—k’—s\%+(k—k’—s)a <C
k'€Z
and then
1
1__ Ne ’ q
IRyl < N2 % (3 2){ 3 X IDu(lze) '}
(3.5) ’ |s|<N k' €Z
< OV B NG gy
While ¢ = oo, inequality (3.4) implies
QkQHDkRN(f)HL{Z < CN%Q*% Z Z 2*\lﬂflgl,s|iQ(k—k;/,s)oz2soz2k/oz”Dk/(f)HL5
k'€Z |s|<N
(3.6) < CNE2TE ()0 2) sup 2D (f)
|s|<N k'€Z
< CyN22~N(G~lal) | fllgese  forall k€ Z.

Hence claim (3.1) is proved by setting Cy = max{C}, Ca2}, where the constants C; and Cy are
given in (3.5) and (3.6), respectively. We now choose a bigger N such that

2
max{ 1 C'ON22 N(g O‘D} < 1.
1-2"
Notice that Th' = (I — Ry)~! = E;?:O(RN)’”, so (3.1) implies
1
-1
. Sa < Sa = 50,q .
(5.7 175 Dl < 1o Ml = Ml

Then ) ;s Ty DY Dy(f) belongs to Ba 2 for f € B 5. In order to prove that Y, ., Ty Ty DN Di(f)

converges to f in Ba’q, we observe
— > TY'DYD(f)(x) = D Ty'DYDi(f) ()  for f € L.
k|<M \k|>M

Thus, we only need to make sure that

> Ty' DY Di(f)

|k|>M

(3.8) lim

M—oo

50,q
BP,P
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For 1 <p<ooand1l<g< oo, by (3.7),

S (S i)}

Q=

> TﬁlDljcVDk(f)’

|k|>M P, P LeZ |k|>M
1
) N ql q
<ad S22 DD lugesg DA iz)'

Lez |k|>M

Lemma 2.4 and Holder’s inequality imply

1

S oo s S 5 rkrae ey ly)
|k|>M Byp CEL " |k|>M |s|<N
q
<)‘N{Z( Z Z 9—|l—k—sleq(¢—k— s)a2sa) rd
LEZ  |k|>M |s|<N
1
~ ( Z Z 2—Z—k—s|62(€—k—s)a2so¢2kaq|Dk(f)”%p>}q‘
|k|>M |s|<N
Therefore,

> Ty'DYDi(f)

|k|>M

<)\N< DL SELIGIA
B4 |s|<N |k|>M
e D SRR S

|k|>M
The assumption of f € B;‘% shows that the right hand side of the above inequality goes to 0 as
M — oo. Thus, the first equality in (1.11) holds for 1 < g < co. If ¢ = 0o, by the monotonicity
of £7 and the fact BZ‘% C B;‘ » , we also have
S 15Dy Du
|k|>M
Hence, the proof is finished. O

hm

o, 00
Bp,?

We now prove Theorem 1.5.
Proof of Theorem 1.5. For g € B;"g and f € (B;"g)/, Theorem 1.3 says

(3.9) (.g) <f ST DY Dily >> — (£ T3 DY Dilg)),

keZ keZ

where Ty' = (I = Ry)™' = Y0 _(RN)™, Ry = Y. jisn DDy, and DY = 37y Dy
Since these Tﬁl, Ry and D,]CV are combinations of Dy, it suffices to claim

(3.10) (f.Dr(9)) = (Di(f),g)  for g€ BYA, fe (Byp).
Assuming the claim for the moment, we have

(f, D Dwr(Bn)™ ' Dy Di(9)) = (Darye(f), Do (Rw)™ " Dy Di(9))



18

= (D Dy yo(f), (Rn)™ D} Di(g)).
Since Ry can be expressed to be Ry = 31y Z|£|>N Dy 4D = > jen Zwa Dy Dy 4y, we
take the summation ), ., Z|Z|>N on both sides to obtain
(f, Rn(Rn)" "D Di(9)) = (Rn(f), (Rn)™ "Dy Dy (g))-

Repeating the same process m times, we obtain

(f,TN" DY Di(9)) = (T5'(f), D& Di(9))
and then
(f, TN D Di(9)) = (DeDYTN'(£), 9),
which and (3.9) give us
(fr9) = (DkDITN'(f),9)-

keZ
The first equality of (1.13) can be obtained similarly.

We now return to the proof of claim (3.10), which contains three steps:

Step 1. Show that each D}, is bounded on B;‘% for all |a| < § and 1 < p,q < oco.
Step 2. Show that (f, Dy(g)) = (Dk(f),g) for all f € (ByR) and g € Byp n L.
Step 3. Show that 5’;’7‘% c ILhn B;i’%, where LY N B;‘% denotes the closure of LY N Bsg with

respect to | - ”Bo"g‘
P,

To prove step 1, we use Theorem 1.3 to write

1
— q q
HDk(f)Hggg = {ZQMI DeDk( > D’]XD’“'TNI(JC))‘ LP}
: = k€7 i

1

_ q] a
< {2 DD DT (1))}

el k'eZ
Lemma 2.4 and Remark 2.2 give

| D¢ Dy DY || 1oy pr S N2T1ERE
and

IDeDRDY || gy S D 27 FH ok,
[s|<N

Taking the geometric average of these two estimates yields

N

1 e ,
| DDk DY || s e S N§2—|€—k|§( Z o~ lk—k —s|e)
|s|<N
N2 Z 9—t=k|5o—|k—k'=s|5

[s|<N

Nz S orleksls,

s|<N

IN

(3.11)

IN



For 1 < ¢ < oo, Holder’s inequality and (3.7) show that

1

1Dx(F) g SNé{ZQMq(Z > 2'“/S'5||Dk/TJ;1<f>HLz;)q}q

ez k' €Z |s|<N
1
1 ’ _ q
svi( X ) S 2 aoeri i, |
|s|<N k€L

3 _
S N22VUTE (f)ll o
S N2V RN £l g
P,
If ¢ = 00, using Theorem 1.3, (3.11) and (3.7), we get

2| DyDy(f)|| 1z S N2 Z pse y "~ UK ms)arl=k sl ok e D T ()l
|s|<N k'eZ

<N22N“”| sup ZkO‘IIDk'T (e
k/

— nN59Nlal|p— o o0

NV (f) g

3
< 2 N‘O{| 500,00
< N2V fll o
and hence

3
oo < N3 9Nl 00
IDeDllgee S N2V x| g
To show step 2, for g € Bzfg N LY, we define

9k,m () =/ Di(x,9)g(y)dv(y), M >0,
Q(0,M)
where Q(0, M) denotes the section {y € R"™!: p(0,y) < M}. By step 1,

3N
1Dxk(9) = gk mll s = 1 Dwgxmnn@o.an)llgeg S N72 |a|)\N||gX1Rn+1\Q(O,M)||B§:7‘g'
We claim that
Jim lgxgn+igeo,mn llgeg = 0-
Indeed, by Remark 2.2 and Lebesgue dominated convergence theorem,
| Dk (gxmnt1\Qeo,m)) Iz S lgxrrt\Qo,a)llze — 0 as M — oo.
For p(z,y) < A237% and p(0,y) > M, the triangle inequality (1.10) implies

1 M
p(0,2) > —p(0,9) = pla,y) > — — A2F,
which yields

| Di(gxmnt1\g0,01)) (T)] =

/ Dy(z,)g(y)dv(y)
R2T1\Q(0,M)

< ‘Dk(g)(x)|XRW+1\Q(O,%—A23*’“)<'r)
< [Dg(g)(x)|-
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Thus, HDk(gXRnH\Q(O,M))HLﬁ < HDk(Q)”Lﬁ and the series ) ;7 2kaq”Dk(9XR”+1\Q(O,M))H%g
converges. Hence, given € > 0, there exists a large number K such that

> 2599 Dy (gxmn+1\ o) Iy < &
|k|>K

On the other hand,

> 29| Dy, (9xmi\ Qo) 15 S > 28| gxgn 1\ Qo.00) 175

. 2—Kaq(1 _ 2aq(2K+1))
= llgxwn+1\qo,m) I 72 1204
-0 as M — oo.
Then
. k q __
e gz 25| D (gxmn+1\@(o,m)) I = 0

and the claim is proved. Therefore,
(3.12) {f, Di(9)) = lim (f, gx,nr)-

Since {int Q(z,2~* J))}ZEQ(()’M) is an open covering of (0, M), there exist finite many sections
{Q(zj,Q_(k+J))}NJ zj € Q(0, M), such that Q(0, M) C UjV:Jl (25,27 *+9)). Let

Jj=D
Q1= Q(0, M) mQ<zl,2—<k+J>>-
QQ = Q(O> M) n Q(z% )\Qh

Q3 = Q(0, M) N Q23,2 *F)\(Q1 U Q2);

Qn, = Q0. M)NQan, 2 N Q

Then {Q;}; Jl are disjoint and U] 1 Q; =Q(0,M). Now we write

Ny
gear(@) =Y [ Di(x,y)g(y)dv(y)
j=1"@Qj
Ny N,
- ; /Qj (Dk(z,y) — Di(z,y5))g(y)dv(y) + ;Dk(a@, m /Qj 9(y)dv(y)

1 2
= Gk (%) + giar, g (T),
where y; is any point in Q;. To consider ||g} ,; ;|| joa» the second difference smoothness condition
” r,P

(v) in Lemma 2.1 will be used. For simplicity, we denote by
Hyj(z,y) = (Dr(2,y) = Di(2,95))Xq, (4)-
Then Hj, j(x,y) satisfies the following conditions
(a) supp Hy;(-,y) C Q(y,164%27%) and supp Hy, j(x,-) C Q(z,8427%);
) [ Hisla)dve) = xo,) [ (Du(e.9) = Dule.y))dv(a) = 0
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(1 —Je 1 .
(©) (o)l £ 277 s 1
(d) |Hj(z,y) — Hyj(@',y)| S 277928l 2'))°

Vie(x) + Vi(y)’

where 2 satisfies p(z,2’) < 324327%. Under the above conditions (a)-(d), using a similar
argument to the proof of Lemma 2.1 and Lemma 2.3, we obtain that for all £,/ € Z and
r,y € RV

(3.13) supp(D¢Hy 5)(-,y) C Qly, 324%(27° v 27%));
(3.14) supp(DeHy j)(x, ) € Q(z,16A42(27¢ v 27F));
) < 9—Jeg—|l—kle 1
(3.15) | Dey (@, )l 5 2772 Vink(x) + Venr(y)
Set
Ny
H(z,y) =Y (D¢Hgj)(x,y).
j=1

By (3.14), (3.15) and doubling condition on measure v,

/ H (2, y)|dv(y) < Z / \(DeHy,) ()| dv(y)
Rn+1 iNQ(x,16A2(2—¢v2-Fk))

Ny
< 27‘]527\27]@\5

Jj=1
< 27J527M7k\5

/ dv(y)

Similarly, (3.13) and (3.15) yield

| M Gplav(e) S 27l
Rn+1
The above two inequalities imply
1De(ghar )2z S 27727 gy, 1< p<oo,

which shows that, for 1 < ¢ < oo,

1
—J laqo—|t—k a
lokas g < 205 3 2enz ek gl

LeZ
(3.16)
S 27752 gl|

—0 as J — oo.
For g = oo, the fact Bg% c B™ P > shows
(3.17) Hgk,M,JHB;‘v;O -0 as J — oo.

By (3.12), (3.16), (3.17) and Lemma 2.5,

B18)  (f.Dug) = lim Jim (fgf ) = Jim Jim S D) [ s@iv).
=1

M —oc0 J~>oo J
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where we use Lemma 2.1 (i) to know Dy (z,y) = Dy(y, z). We now write

Ny
; dv
;Dw)(yﬂ/@ Z o) (y)

/Rn+1z (Dr(f)(w5) = Dr(H) ) xq, (Y )}Q(Zl)dV(y).

Notice that
|(Dx(y;, ) — Di(y, %)) xq, )| = | (Dr(2,y;) — Di(x,9))xq, W)| = [Hyj(z,y)|
and

1
q
1555 )l geg, = { ) zsaqHDsHk,j(‘ay)’ng}

SEZL
1

< 2—J62ka{ 3 2(s—k)aq2—s—keq} V)bt
SEZ

S 27792M (Vi(y)) ™

—0 as J — oo.
Then, for f € (BZ%)/’
|(Dk(f)(y5) — Di(F) W) xa, (W) = ’/ Dy(yj,z) — Di(y,2))xq, (y) f(z)dv(z)
< [ (Prws ) = Dk<y,‘>)><QjHB;g||f|r(B%),
—0 as J — oo.

The Lebesgue dominated convergence theorem shows that

lim /Rg (D) ws) = DulF) ) xa, W) fa(w)av(y) = 0,

J—o00

which together with (3.18) shows

{f, D(g)) = lim lim Z )9(y)dv(y) = Di(f)(y)g(y)dv(y) = (Dr(f), 9)-

M—o0 J~>oo

For the proof of step 3, given g € B ’q , let
Ga@ = [ DY @yDI )W), Mo
Q(0,M)

Then gi v € LU N Bz"g. It follows from Theorem 1.3 that

‘g— > Gk

|k|<pM

Hence, claim (3.10) is proved, and the proof of Theorem 1.5 is completed.

—0 as M — oo.

30,9
Bpﬂ’

§ Hg— Z DY DeTR (9)x00.0)
B4 k|<M
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4. BESOV SPACES ASSOCIATED WITH SECTIONS

We now apply the Calderén-type reproducing formula (1.11) in L2 to prove that the definition
of B;"g is independent of the choice of approximations to the identity.

Theorem 4.1. Let |a| < § and 1 < p,q < oo. Suppose that {Sy}rez and {Py}rez are
approximations to the identity associated with P on (R"™Y p,v). Set Dy = Sy — Sp_1 and
Ey = Py — Py_1. Then, for f € L2,

{Z (2ka||Dk<f>HLz;)q}; ~ { > (zk’a||Ek/<f>uLz;)q}3’ i 1< q< o0

keZ k'eZ

sup 2| Dy(f)ll .z =~ sup 2| Ep ()] 1y if q=oo.
kEZ k'€Z

Proof. For f € L2, we have f =3, ENEwTy'(f) in L2. Hence, there exists a subsequence
(we write the same indices for simplicity) such that f = Y",,c, EY EpT v (f) almost everywhere.
Then

Di(f) =Y DhENETY'(f),
k€7
and Lemma 2.4 yields
1 Dx(f)ll 2 < Z IDREY | oy 2 | B TR ()l e

k'eZ

<3S 2 RS BT () .

k'€Z|s|<N

(4.1)

For 1 < ¢ < oo, Holder’s inequality, (3.7) and (4.1) show that

(= (2’“‘*1Dk<f>uw)"};

kEZ
9
S m )
keZ “K'€L|s|<N
1
X <Z > 2’“’“'8'“(’“’“'5>°‘23a2’€’aqHEk'Tﬁl(f)”qL”>}q
k'€Z|s|<N y
1
, . q
< () Seemmaon,)
|s|<N k'eZ

S N2VNTR ()l e

sVl S (#Eul) |

k'eZ
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While ¢ = oo, using (3.7) and (4.1) again, we get

QkaHDk(f)HL’; 5 Z Z 2_lk_k/_S|€+(k_k/_s)a28a2k/a||Ek’Tj;1(f)HL’;
k' €Z|s|<N

< NoNlel|p=1 00

< N7 () o

< N2V sup 25| B (f)||p - for all k € Z.

k'eZ
Similarly, we have the reverse inequalities. O
Lemma 4.2. Let |of < § and 1 < p,q<oo. If f € B;‘%, then f € ( ,7;‘1 )/ and
., < NoNlel .
1y S N2 g

Proof. Let {Sk}rez be an approximation to the identity associated with P on (R"*! p v) and

Dy = Sy — Si_1. Given f € BIO; and g € B,% ,73 , Theorem 1.3 gives f = >, DNDkT L

and Holder’s inequality shows

(fall=|[ > DI DY @))dv(z)
kGZ
< S IDTR Dl IDY @)
kEZ
ko) D, T 2k | D (g)]17, 1"
<{ it} {2 /)

: N
Since Dy’ = i<y Di+j, we have

1 1
< ’ g 7
{22 ked | DN (g Hq } < {Z 9—kag ( Z | Di+5 (9 ”L”) }
hez keZ liI<N
1
. . . , ’ Py
< > wfy oo i, )
l7]1<N keZ v
S N2Ngll s
Bp’,P
Thus, we apply (3.7) to obtain
(4.2) £, 9)] S N2MN £l g0 191 5o
p,P o' P
and hence
, Nla] .
HfH(B;,%q y S N2VEAN fllgoa
which completes the proof. U

We now are ready to show Theorem 1.7.
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Proof of Theorem 1.7. To prove B ’q C ng, given f € B;‘ ’7%, we will find a sequence of functions

in Bz‘f) such that this sequence converges to f in B;i 5. Lemma 2.5 and Theorem 1.5 yield

Dy (f)(x) = (Di(z,), f)
=:< ;;%1’11n¢Dk4f>>
=Dy < > Ty' DDy ( f)) ()  almost everywhere,

k'€l

which implies

DkRN(f)(Z) = Dy, Z Z Dko-i-ZoDko(f)(Z)

k0€Z|€0|>N
Y ¥ Dwopko(z TNlpk,Dmf))m
ko€Z |o|>N k'€Z
Thus,
DRy (f)(2)
o0
SDIDIN DD DN B DD DRIV WA GIE
k' €Z m=0 ko€Z || >N €7 [y | >N

(o)
=SS N N S DiDugraDry - Diyttn, Do Dis DY (£)(2).

K €Zm=0ko€Z |lo|>N  km€Z |y |>N

Since the norms of 5’;"% and B;‘ ’7% are the same, the same argument as the proof of (3.1) shows
3 —N(E—
IR (D)l eg < CoN 22 VGV £l g

Henc‘e Ty is bounded on B;?,g as well, so Tn(g) = >, DeDY (g) belongs to B % provided
gE Bg’%. Using the fact that Ty' = (I — Ry)~! = 3.%°_ (Rn)™, we obtain

(4.3) HTNl(f)HB;g < )\NHfHB;;’;;

and then >, D DN Ty (f) belongs to B;i%. In order to prove that >, DD Tx'(f) converges
to f in B; %, we apply Lemma 2.5 and Theorem 1.5 again to get

Dy(f) = Dk< Z Dk/DﬁTﬁl(fo almost everywhere.

k'€Z
Hence
Dy, <f - Z Dk/DljjTNl(f)> = Dk< Z Dk/D,yTNl(f)> almost everywhere,
|k | <M |k'|>M
and
Hf— Z D DNTYM(f Z D DTN (f) .
k| <M B3 |k |>M Byp
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The same argument as the proof of (3.8) gives

f= > DuDYTY(f)

|k <M

(4.4) —0 as M — oo.

Ha,q
Bpﬂ’

Define fi 1 by
from(2) = / Dy(z,w) (DY Ty () (w)dv(w), M > 0.
Q(0,M)

Then fi v € BZ‘% because of Remark 2.6. The above (4.4) gives

Hf— > fru

lk|<M

— 0 as M — oo.

S0, q
Bpﬂ’

To show Bg% C Bglg, let {fm}men C Bg% be a Cauchy sequence with respect to the norm
|l goq - We will show that there is an f € B3 such that f,, converges to f in BJ’j as m — oc.
p77) b 9
By Lemma 4.2,
N| .
”fn—me(B;,?;’Dql)’ SNQ a|)\N||fn_fm||B;v7‘;7

which says that {f;}men is also a Cauchy sequence in (B;?;;ql), with respect to the norm

| - H(B_f’;/)’ and ”fm”Bg’;; < C. Since (B;?%q’)’ is a Banach space (see [23, p. 111]), there exists
o :

an f € (B;O%q/)/ such that
| fm — fH(B;/%q/), —0 as m — oo.
It follows from Lemma 2.5 that
D m z S D Zy S5—a,q! m 5—a,q’\/ 9
1Dk = D < 1Dk Mg i = g
which implies
(45) Tim_ Dy(fm)(2) = Di(f)(2).

By Fatou’s lemma and (4.5),
||f”thg < liminf ||fm\|3;}’v7g <,
which shows f € Bg’ ’7%. Applying Lebesgue dominated convergence theorem, we obtain that f,

1 > a,q
converges to f in B,p. O

To study the dual of Bg %, we need the following lemma.

Lemma 4.3. Let {Si}rez be an approzimation to the identity associated with P on (R"*1 p, v)
and Dy, = Sy — Sg—1. For|a| < § and 1 < p,q < oo, if a sequence of functions {gy}rez satisfies
H{2ka”gk”L§}kEZng < 00, then Y ;.7 Dr(gr) € B;i’;ﬂ. and

> Dilgr)

kEZ

SNkl e ez | o-
B
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Proof. For my,mg € Z with m1 < msg, define g;3? = Zzzml Dy(gx). Given f € B ,o;;q , Holder’s

inequality yields

gm17 |< Z |gkaDk

k=m1
ma2 1 mo , L/
ka a] ¢ —ka q | aq
s{ > (2lgellzz) } { S (2 IDel,y ) }
k=m k=my
mo 1
ko q|q
S{ > (2lolez) } 1l
o'\ P
k=m1

which shows g2 € (B; O"q/), and
= q)
k
92 sy < { 30 (2lanliz)'}
p/ P
k=m1

If weset g = 1z Di(gk), then g € (B P /) as well. Using Lemma 2.4 and Holder’s inequality,
we get

> (21D5(0)lrz)" < 30 (2 X 103 Dula) 1)’

JEZ JEZ keZ
< Z (ZQ(J k)a—|j k\€2kaHngL€)
jeZ kel
< Z QquHQkHLP’
keZ
which completes the proof. O

Proof of Theorem 1.8. (a) follows from Theorem 1.7 and (4.2). For (b), given a bounded linear

functional £ on Bva by Theorem 1.7 again, L is also a bounded linear functional on B;‘ ’7% and
LD <INy for £ € By

Let {S;}rez be an approximation to the identity associated with P and set Dy = S — Sk—1.
Then, for each f € B;’%, {Dy(f)}rez belongs to the sequence space

tg(Ly) = {{fk}kez e teezlles nz) = (ZQkaququLgy < oo}.

kEZ

Define Lo on a subset of £3(L}) by

Lo({Dk(f)}rez) = L(f)  for f e B
Hence,

Lo ({Dk(f)}kez) | < ILINlgeg = TEINILDR() bhezlleg zp)-
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The Hahn-Banach theorem shows that Lo can be extended to a functional Lo on £3(LY). Since
(L5 (Ly)) = E;,O‘(L,’jl) for 1 < p,q < oo (see [18, page 178]), there exists a unique sequence
{9k }rez € K;Q(Lg/) such that

Lo({fithez) =Y (frsg)  for all {fi}rez € £5(LE)

kEZ

and
o kezl, o gy S 10l < €11
For f € 8;’7%, we have
L(F) = Lo({Dr(fhrez) = SUDR(), 98 = 34 Diln)) = <f, ZDk<gk>>.
keZ kEZ keZ

Let g = > 1cz Di(gk). Lemma 4.3 says that g € Bl;%q/ and

19l et < ok ezl gy < IE

'\ P

This completes the proof. O

5. PROOF OF THE EMBEDDING THEOREM FOR B;“’g

Proof of Theorem 1.10. Let p; and ps satisfy the assumption of Theorem 1.10. Set % = —
then p% +L =14 p%' By Lemma 2.3,

r

~lk—tler” 1 " (e
2 (W/\k(ﬂv)“‘WAk(y)) dv(@)

The doubling property and the lower bound condition (1.14) on the measure v give

[1DeDpt) v 5

Q(y,1642(2=fv2k))

/|Dsz(fL‘a )" dv(z) < 2710 (mG(y))l_r/ S 27 Iktler (gt y gk 1=,
Similarly,
/|D5Dk($, )" dv(y) S 27kt (g7t y g k)=,
For f € B;‘;’g, Young’s inequality yields
IDe D DY TR () o
. < (2—\k‘—£|ar’(2—€w v 2—1W)1—r') ,,111 (2—|k—€|ar’(2—ﬁw v 2_%)1_7:/)175 HDI]ﬂVT];l(f)HL;ﬁQ
= (27t @ty 27BN Y T DT ()| e
= g7l y 9k i | DNTRL(f)]l e

When 1 < ¢ < 0o, we use Theorem 1.5 to get

12 = { o2 | 2o DeDf T ()]
LeZ k

1

q q
15




1
1 1 q
S{ S pe (Tt v E DT (D)

ez kEZ

11
< { Z 2041@(2 2(k2)62_&0(“_m)HDlJcVT]Gl(f)”L52>q}

1
q

LeZ k>¢
1
n { Zzwq(zg—w—mkw(%pé>||D,QVTN1(f)||Lp2)q}"
I/ k<t
=14+ J
For I, the condition &< — £ = o — a9 shows
p1 p2
1
I = { Z 2a1€q < Z 2—(k—€)s2—€(a1—a2) HDI]cVTNl(f)HLIZP)q} q
LeZ k>{
1
(ke _ _ a9
{3 (T ottt b DY T )}
LET k>4

Holder’s inequality and |ag| < § imply

1< {E Y e g T ), |

Q=

LeT k>4
1
= {Z (Z2—(k—£)(a+a2))2ka2q||DIJ€VT]§ (f )||Lp2}
keZ <k
1
s{ 2o,
keZ

Minkowski’s inequality and (4.3) give

I's {Z2ka2q( Z [ DTy )’L”)q}}]

keZ s|<N

Q=

Z 2—3(12{ Z 9 (k+s) QQqHDk—i—s ( )HLP2}

[s|<N keZ
< NNl TN (f) | gos
p2,P

N2Nlez|
N(s ‘ ”fHBagq
~1-N32- az|)
For J, we use the conditions £ o ]% = —ay, || < Z and Holder’s inequality to get
1
q
_ { Z (Z 27(€fk)5+a1(£fk)2ka2HDI]g\ijgl(f)Hng) }q

4<y/ 3N
1

aq
l

{Z(ZQ (L—k)e+an (- k) (ZQ (=k)etan(E=k)ghaza) DN ( f );Lm)}

ez k<t k<t
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1

S{ S (Tr e )ty 1A i, |

keZ >k
1
_ q
S{ ST
kEeZ

By Minkowski’s inequality and (4.3) again,

1

q
ED IR DL SInT

[s|[<N keZ
< NNl Tgt ()] g
p2,P

N2Nlez|
~ 1 N32N(§—laz])

11l g2
While ¢ = oo, it follows from Minkowski’s inequality, Theorem 1.5, and (5.1) that

2Dyl g < 2 (D IIDeDRDY TR () 1)
keZ
1 1
S 2t ( 32 It @t v 2 k) h | DYTR () e )
k€EZ

: w w _ _ £ k=
Smcep—l—p;—al az and —7 < ap < az < 3,

2a1ZHD€(f)HL51 < 20¢1£(Z 9—(k—l)eg—L(on—az) HDIJCVTj;l(f)Hng)

k>¢
4 gl ( > o ERegkenmo2) DT () ”L’52>
k<t

_ Z 27(k7€)(5+a2)2k0‘2 ||D,]€VT];1 (f) ||L,Ii2

k>{

+ 3 g (Rieangkon DN LI (f) |

k<t

S sup 2k | DNT ()| 2.

Applying (4.3) again, we obtain
IFllgere = Sup 2V De(f)ll o S Sup 2202 DT ()l 2

< Z 2752 qup 2(k+5)a2||Dk:+sT]§1(f)||L€2
= keZ
N —1
S N2MT ()] goarce
P2,
N2Nlez|
~ 11— N2 NGl

Tl gozee

and the proof of Theorem 1.10 is completed.



31

REFERENCES

[1] L. A. Caffarelli and C. E. Gutiérrez, Real analysis related to the Monge-Ampére equation, Trans. Amer. Math.
Soc. 348 (1996), 1075-1092.

[2] L. A. Caffarelli and C. E. Gutiérrez, Properties of the solutions of the linearized Monge-Ampére equation,
Amer. J. Math. 119 (1997), 423-465.

[3] I. Chavel, Riemannian Geometry: A Modern Introduction, Cambridge University Press, 1993.

[4] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc.
83 (1977), 569-645.

[6] T. Coulhon, G. Kerkyacharian, and P. Petrushev, Heat kernel generated frames in the setting of Dirichlet
spaces, J. Fourier Anal. Appl. 18 (2012), 995-1066.

[6] G. David, J.-L. Journé, and S. Semmes, Opérateurs de Calderén-Zygmund, fonctions para-accrétives et
interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56.

[7] P. Daskalopoulos and O. Savin, C**® regularity of solutions to parabolic Monge-Ampére equations, Amer. J.
Math. 4 (2012), 1051-1087.

[8] C.E. Gutiérrez and Q. Huang, W?? estimates for the parabolic Monge-Ampére equation, Arch. Ration. Mech.
Anal. 159 (2001), 137-177.

[9] P. Hajlasz, P Koskela and H. Tuominen, Sobolev embeddings, extensions and measure density condition, J.
Funct. Anal 254 (2008), 1217-1234.

[10] Y. Han, The embedding theorem for the Besov and Trieble-Lizorkin spaces on spaces of homogeneous type,
Proc. Amer. Math. Soc. 123 (1995), 2181-2189.

[11] Q. Huang, Harnack inequality for the linearized parabolic Monge-Ampére equation, Trans. Amer. Math. Soc.
351 (1999), 2025-2054.

[12] N. V. Krylov, Sequences of convex functions, and estimates of the mazimum of the solution of a parabolic
equation, Sibirsk. Mat. Z. 17 (1976), 290-303 (in Russian), English translation in Siberian Math. J. 17
(1976), 226-236.

[13] M.-Y. Lee, C.-C. Lin, and X.-F. Wu, Characterization of Campanato spaces associated with parabolic sections,
Asian J. Math. 20 (2016), 183-198.

[14] R. A. Macias and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979),
257-270.

[15] A. I. Nazarov and N. N. Ural’tseva, Convez-monotone hulls and an estimate of the mazimum of the solution
of a parabolic equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Stesklov. 147 (1985), 95-109.

[16] L. Saloff-Coste, Aspects of Soblev-type inequalities, London Mathematical Society Lecture Note Series 289,
2002.

[17] L. Tang, Regularity results on the parabolic Monge-Ampére equation with VMO type data, J. Differential
Equations 255 (2013), 1646-1656.

[18] H. Triebel, Theory of Function Spaces, Birkhduser Verlag, Basel, 1983.

[19] K. Tso, Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985),
867-882.

[20] K. Tso, On an Aleksandrov-Bakel’'man type mazimum principle for second-order parabolic equations, Comm.
Partial Differential Equations 10 (1985), 543-553.

[21] R. Wang and G. Wang, On ezistence, uniqueness and regularity of viscosity solutions for the first initial-
boundary value problems to parabolic Monge-Ampére equation, Northeast. Math. J. 8 (1992), 417-446.

[22] R. Wang and G. Wang, The geometric measure theoretical characterization of viscosity solutions to parabolic
Monge-Ampére type equation, J. Partial Differential Equations 6 (1993), 237-254.

[23] K. Yosida, Functional Analysis, sixth edition, Spring-Verlag, Berlin-New York, 1980.

Meifang Cheng & Meng Qu

School of Mathematical and Computer Sciences
Anhui Normal University

Wuhu 241003

China

Email: meifangcheng@126.com; qumeng@mail.ahnu.edu.cn



32

Chin-Cheng Lin
Department of Mathematics
National Central University
Chung-Li 320

Taiwan

and

National Center for Theoretical Sciences
1 Roosevelt Road, Sec. 4

National Taiwan University

Taipei 106

Taiwan

Email: clin@math.ncu.edu.tw



