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Unsteady motion of a rarefied gas between two parallel plates caused when one of the plates starts
a harmonic oscillation in its normal direction is investigated under the slightly rarefied condition,
i.e., for small Knudsen numbers. The compressible Navier–Stokes equations are employed, and
their appropriate temperature jump condition is derived systematically. The equations with the
correct boundary conditions are solved numerically to give the unsteady flow field. In particular,
the time-periodic solution established at later times is investigated in detail, and it is shown that
the one-period average of the momentum and energy transferred from the oscillating plate to the
resting one take nonzero values in contrast to the linear theory. This confirms the numerical result
based on the Bhatnagar–Gross–Krook model of the Boltzmann equation for intermediate Knudsen
numbers [T. Tsuji and K. Aoki, Microfluid. Nanofluid. 16, 1033 (2014)]. It is also shown that the
gas approaches the time-periodic motion exponentially fast in time.

PACS numbers: 47.45.Ab, 05.20.Dd, 51.10.+y, 47.61.Fg

I. INTRODUCTION

Moving boundary problems for the Boltzmann and related kinetic equations have attracted
much attention in micro fluid dynamics and in rarefied gas dynamics (e.g., [1–7]) in connection
with the importance of the gas motion caused by a micromechanical oscillator in MEMS devices
(e.g., [8–12]) and of the wave propagation in a rarefied gas (e.g., [13–21]). When a system
containing an oscillating boundary is of micro scale or in vacuum facilities, the mean free path
of the gas molecules can be comparable to the size of the system. In this case, the ordinary
continuum gas dynamics is not applicable and is to be replaced by kinetic theory [22–25]. In
addition, even when the system is of ordinary size in an atmospheric pressure, if the oscillator
makes an oscillation with a very high frequency comparable to the collision frequency of the
gas molecules, the ordinary gas dynamics should be replaced by kinetic theory.

In the present paper, we consider a fundamental problem containing an oscillating boundary.
More specifically, we consider the time-dependent motion of a gas between two infinitely wide
plates parallel to each other when one of the plates starts a harmonic oscillation in its normal
direction.

This problem, as well as the problem without the stationary plate (i.e., the gas occupies the
half space bounded by the oscillating plate), is one of the most fundamental time-dependent
problems in kinetic theory and has been investigated by many authors (e.g., [13–21]). However,
many of the existing works are based on the linearized setting, in which the speed of the
oscillating plate is much smaller than the sonic speed, and consider the time-periodic state. In
the present study, we focus our attention on the fully nonlinear setting in which the speed and
amplitude of the oscillation of the plate can be large, as studied in [15, 16, 20, 21].

The present problem was investigated numerically in a recent paper [21] on the basis of the
Bhatnagar–Gross–Krook (BGK) model of the Boltzmann equation [26, 27], and the transient
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behavior of the gas approaching a time-periodic state was clarified. In this problem, the oscil-
lating plate creates and propagates discontinuities in the velocity distribution function of the
gas molecules continuously. In [21], a numerical method that can describe the propagation of
the discontinuities proposed in [4] was used, and an accurate numerical solution was obtained
for a wide range of the Knudsen number, the ratio of the mean free path of the gas molecules
to the characteristic length of the system. But, since the method is computationally expensive,
it is hard to obtain the long-time behavior as well as the solution for small Knudsen numbers.

For small Knudsen numbers, however, it is commonly known that the Navier–Stokes equations
can describe the behavior of the gas well if appropriate slip boundary conditions are used.
This may give a good alternative to the Boltzmann and its model equations that enables us to
investigate the long-time behavior more easily. In fact, the slip flow theory has been established
by Y. Sone in a series of papers by a systematic asymptotic analysis for the Boltzmann equation
[28–33] (see also [24, 25]). For ordinary solid boundaries, the theory consists of (see [24, 25])
the linear theory for small Reynolds numbers [28, 29, 31], the weakly nonlinear theory for finite
Reynolds numbers [29–31], the partially nonlinear theory for finite Reynolds numbers [32], and
the fully nonlinear theory for large Reynolds numbers [33], each of which provides appropriate
fluid-dynamic equations, slip boundary conditions, and the corrections in the vicinity of the
boundary (Knudsen layer). However, the theory is restricted to time-independent problems,
so that it cannot be applied to the present problem. The linear theory has been extended to
time-dependent problems recently [34–36] (see also Sec. 3.7 in [25]). But, since the boundary
is assumed not to be moving in its normal direction, it is not applicable to the present problem
even if we consider the linear setting.

For this reason, we need a different framework for the present problem. In the present study,
we decided to use the compressible Navier–Stokes equations as our basic equation. However,
if we search the appropriate and correct slip boundary conditions for the compressible Navier–
Stokes equations that can be applied immediately to the present problem with a moving plate,
we notice that it is hard to find them in the literature. For this reason, following the stan-
dard procedure [24, 25, 37, 38], that is, the analysis of the Knudsen layer combined with the
Chapman–Enskog expansion, we try to derive the slip boundary conditions, specialized to the
present problem, in a systematic way. Then, we apply the compressible Navier–Stokes equa-
tions and the derived slip conditions, consisting of the no-slip condition for the flow velocity
and a jump condition for the temperature, to the present problem and investigate the unsteady
behavior of the gas and the process of approach to a time-periodic state numerically.

The paper is organized as follows. After the introduction in Sec. I, we state the problem and
the assumptions in Sec. II and formulate the problem using kinetic theory in Sec. III. Then,
we summarize the Chapman–Enskog solution and the compressible Navier–Stokes equations in
Sec. IV and the jump boundary conditions in Sec. V. Section VI is devoted to the explanation of
the numerical method for the compressible Navier–Stokes equations, and the numerical results
are given in Sec. VII. Section VIII contains short concluding remarks. In addition, we summarize
the basic matters concerning the collision operator of the Boltzmann equation in Appendix A
and derive the slip boundary conditions in Appendix B.

II. PROBLEM AND ASSUMPTIONS

Let us consider a gas between two infinitely wide plates, kept at temperature T̃0 and parallel
to each other. One of the plates is located at x̃1 = ãw, and the other at x̃1 = d̃ (> ãw), where
(x̃1, x̃2, x̃3) is the Cartesian coordinate system, and the gas is in a uniform equilibrium state at

rest at density ρ̃0 and temperature T̃0. At time t̃ = 0, the plate at x̃1 = ãw starts a harmonic
oscillation with amplitude ãw and angular frequency ω̃ around x̃1 = 0, that is, the location of
the plate is described as x̃1 = x̃w(t̃) with x̃w(t̃) = ãw cos ω̃t̃ for t̃ ≥ 0 (see Fig. 1). We investigate
the unsteady motion of the gas numerically under the following assumptions:

(i) The behavior of the gas is described by the Boltzmann equation.

(ii) The gas molecules undergo diffuse reflection on the surfaces of the plates.

(iii) The problem is spatially one dimensional, so that the physical quantities depend on neither
x̃2 nor x̃3, and the macroscopic gas flow is perpendicular to the plates.
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gas

x̃1 = ãw cos ω̃t̃

x̃1 = d̃

x̃1

FIG. 1: A gas between an oscillating plate and a stationary plate.

(iv) The mean free path of the gas molecules is much shorter than the characteristic length of
the system. That is, the gas is slightly rarefied.

Because of assumption (iv), we will analyze the problem using the Navier–Stokes equations
and the appropriate jump conditions on the plates that are consistent with the assumptions (i)
and (ii).

III. FORMULATION OF THE PROBLEM USING KINETIC THEORY

A. Notations

Before formulating the problem, we introduce some notations. Let ζ̃i be the velocity of gas
molecules, f̃(t̃, x̃1, ζ̃i) the velocity distribution function of gas molecules, ρ̃(t̃, x̃1) the mass
density of the gas, ṽi(t̃, x̃1) =

(
ṽ1(t̃, x̃1), 0, 0

)
the flow velocity of the gas [cf. assumption (iii)],

T̃ (t̃, x̃1) the temperature of the gas, and p̃(t̃, x̃1) = Rρ̃T̃ the pressure of the gas, where R is the
gas constant per unit mass (R = kB/m with the Boltzmann constant kB and the mass of a gas
molecule m). In addition, let p̃ij(t̃, x̃1) be the stress tensor and q̃i(t̃, x̃1) the heat-flow vector.
We set the reference time t̃0, the reference speed c̃0, and the reference length L as

t̃0 = 1/ω̃, c̃0 = (2RT̃0)
1/2, L = c̃0t̃0 = (2RT̃0)

1/2/ω̃. (1)

Then, we introduce the dimensionless quantities (t, xi, ζi, f, ρ, vi, T, p, pij , qi) that correspond

to (t̃, x̃i, ζ̃i, f̃ , ρ̃, ṽi, T̃ , p̃, p̃ij , q̃i) by the following relations:

t = t̃/t̃0 = t̃ω̃, xi = x̃i/L, ζi = ζ̃i/c̃0,

f(t, x1, ζi) = (c̃30/ρ̃0)f̃(t̃, x̃1, ζ̃i),

ρ(t, x1) = ρ̃/ρ̃0, vi(t, x1) = (v1(t, x1), 0, 0) = ṽi/c̃0,

T (t, x1) = T̃ /T̃0, p(t, x1) = p̃/p̃0,

pij(t, x1) = p̃ij/p̃0, qi(t, x1) = q̃i/p̃0c̃0,

(2)

where p̃0 = Rρ̃0T̃0 is the reference pressure based on ρ̃0 and T̃0. Then, the dimensionless
macroscopic quantities ρ, vi, T , p, pij , and qi are expressed as follows [25]:

ρ =

∫
fdζ, vi =

1

ρ

∫
ζifdζ, T =

2

3ρ

∫
(ζi − vi)

2fdζ, p = ρT, (3a)

pij = 2

∫
(ζi − vi)(ζj − vj)fdζ, qi =

∫
(ζi − vi)(ζj − vj)

2fdζ, (3b)

where dζ = dζ1dζ2dζ3. Here and in what follows, the summation convention (i.e., aibi =
a1b1+a2b2+a3b3, a

2
i = a21+a22+a23) is used, and the domain of integration with respect to ζi is

its whole space unless otherwise stated. The assumption v2 = v3 = 0 [assumption (iii)] means
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that we implicitly assume that f is cylindrically symmetric in ζi, i.e., f = f(t, x1, ζ1,
√
ζ22 + ζ23 ).

Therefore, some components of pij and qi vanish, that is,

p12 = p21 = p23 = p32 = p31 = p13 = 0, q2 = q3 = 0. (4)

Let us denote by ṽw the velocity (in the x̃1 direction) of the oscillating plate, i.e., ṽw =
−ãw ω̃ sin ω̃t̃. We introduce the dimensionless position xw(t) and velocity vw(t) of the oscillating
plate and the dimensionless parameters aw and d corresponding to the amplitude ãw of the
oscillating plate and the position d̃ of the resting plate by

xw(t) = x̃w/L, vw(t) = ṽw/c̃0, aw = ãw/L, d = d̃/L. (5)

Then

xw(t) = aw cos t, vw(t) = −aw sin t. (6)

It should be noted that the dimensionless amplitude (and speed) of the plate aw is of the order
of the Mach number Ma based on the maximum speed of the plate, that is,

aw =
√
5/6Ma, Ma = ãwω̃/[(5/3)RT̃0]

1/2. (7)

B. Basic equations

The dimensionless Boltzmann equation [25] in the present spatially one-dimensional problem
is written as

∂f

∂t
+ ζ1

∂f

∂x1
=

1

ϵ
J(f, f), (8)

with a small parameter ϵ:

ϵ = (
√
π/2)Kn = (

√
π/2)(l0/L), (9)

where Kn is the Knudsen number, and l0 is the mean free path of the gas molecules at the initial
equilibrium state at rest. In Eq. (8), J(f, f) is the dimensionless collision term the explicit
form of which is given in Appendix A.

The diffuse-reflection condition [25] on the moving boundary is written as

f(t, xw(t), ζi) =
σw

π3/2
exp

(
−
{
[ζ1 − vw(t)]

2 + ζ22 + ζ23
})

, for ζ1 − vw(t) > 0, (10a)

σw = −2π1/2

∫
ζ1−vw(t)<0

[ζ1 − vw(t)] f(t, xw(t), ζi)dζ, (10b)

where xw and vw are given by Eq. (6), and that on the plate at rest is

f(t, d, ζi) =
σw

π3/2
exp

(
−(ζ21 + ζ22 + ζ23 )

)
, for ζ1 < 0, (11a)

σw = 2π1/2

∫
ζ1>0

ζ1 f(t, d, ζi)dζ. (11b)

The initial condition is

f(0, x1, ζi) = π−3/2 exp
(
−(ζ21 + ζ22 + ζ23 )

)
, for aw ≤ x1 ≤ d. (12)

It is seen from Eqs. (8), (10a), (11a), and (12) that the problem is characterized by the three
parameters ϵ, aw, and d.
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IV. CHAPMAN-ENSKOG SOLUTION AND THE COMPRESSIBLE
NAVIER-STOKES EQUATIONS

The Chapman–Enskog expansion [25, 39, 40] is a well-known procedure to derive the Eu-
ler and Navier–Stokes equations for a compressible fluid from the Boltzmann equation. In
this section, we summarize the Chapman–Enskog solution obtained by the Chapman–Enskog
expansion and the resulting compressible Navier–Stokes equations for the present spatially
one-dimensional problem. We basically follow the description and notation of Sec. B4 in [25],
but note that some symbols are not exactly the same. For example, the hat ˆ indicating the
dimensionless quantities in [25] is omitted here, and Ci in [25] is denoted by Ci here.

The first-order Chapman–Enskog solution for the spatially one-dimensional Boltzmann equa-
tion (8) can be expressed as

f = f
(1)
CE +O(ϵ2) = f (0) + f (1)ϵ+O(ϵ2). (13)

Here, the leading-order term f (0) is a local Maxwellian distribution

f (0) =
ρ

(πT )3/2
exp

(
− (ζ1 − v1)

2 + ζ22 + ζ23
T

)
=

ρ

T 3/2
E(C), (14)

and the first-order term f (1) takes the following form:

f (1) = f (0)Ψ, (15a)

Ψ = − 1

ρT 1/2

(
C2

1 − 1

3
C2

)
∂v1
∂x1

B(0)(C, T )− 1

ρT
C1

∂T

∂x1
A(C, T ), (15b)

where

C1 =
ζ1 − v1
T 1/2

, C2 =
ζ2

T 1/2
, C3 =

ζ3
T 1/2

, (16a)

E(C) = π−3/2 exp(−C2), C = (C2
1 + C2

2 + C2
3 )

1/2, (16b)

and B(0)(C, T ) and A(C, T ) are, in principle, known functions of C and T , which are specified
in Appendix A. The expansion (13) is designed in such a way that the first-order term f (1)

satisfies the constraint: ∫
(1, ζ1, ζ

2
i )f

(1)dζ = 0, (17)

and the same is true for the O(ϵ2) term in Eq. (13). Therefore, ρ, v1, and T contained in f (0) are
nothing but the density, the flow velocity in the x1 direction, and the temperature associated
with f of the expansion (13) [cf. Eq. (3a)].

With Eq. (13), pij and qi in Eq. (3b) become

p11 = p− 4

3
ϵΓ1(T )

∂v1
∂x1

, p22 = p33 = p, pij = 0 (i ̸= j), (18a)

q1 = −5

4
ϵΓ2(T )

∂T

∂x1
, q2 = q3 = 0, (18b)

where, Γ1(T ) and Γ2(T ) are expressed as

Γ1(T ) =
8

15
√
π
T 1/2

∫ ∞

0

C6B(0)(C, T ) e−C2

dC, (19a)

Γ2(T ) =
16

15
√
π
T 1/2

∫ ∞

0

C6A(C, T ) e−C2

dC, (19b)

and are related to the viscosity µ and the thermal conductivity λ as

µ = (p̃0L/c̃0) ϵΓ1(T ) = (
√
π/2)(p̃0l0/c̃0) Γ1(T ), (20a)

λ = (5/4)(p̃0c̃0L/T̃0) ϵΓ2(T ) = (5
√
π/8)(p̃0c̃0l0/T̃0) Γ2(T ). (20b)
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For hard-sphere molecules and the BGK model, Γ1(T ) and Γ2(T ) are explicitly expressed as

Γ1(T ) = 1.270042427T 1/2, Γ2(T ) = 1.922284066T 1/2 (hard sphere), (21a)

Γ1(T ) = Γ2(T ) = T (BGK). (21b)

With Eq. (18), the Maxwell transport equations, which are derived by integrating Eq. (8)
times (1, ζi, ζ

2
j ) over the whole space of ζi, reduce to the compressible Navier–Stokes equations:

∂ρ

∂t
+

∂(ρv1)

∂x1
= 0, (22a)

∂(ρv1)

∂t
+

∂(ρv21)

∂x1
= −1

2

∂p

∂x1
+

2

3
ϵ

∂

∂x1

[
Γ1(T )

∂v1
∂x1

]
, (22b)

∂

∂t

[
ρ

(
3

2
T + v21

)]
+

∂

∂x1

[
ρv1

(
5

2
T + v21

)]
=

5

4
ϵ

∂

∂x1

[
Γ2(T )

∂T

∂x1

]
+

4

3
ϵ

∂

∂x1

[
Γ1(T )

∂v1
∂x1

v1

]
, (22c)

where p = ρT [Eq. (3a)], and the x2 and x3 components of the momentum equation become
trivial (i.e., 0 = 0).

If we substitute Eq. (13) with ρ, v1, and T satisfying the Navier–Stokes equations (22) into
the Boltzmann equation (8) multiplied by ϵ, then we observe that the expansion (13) satisfies
the latter with the error of O(ϵ2).

V. JUMP BOUNDARY CONDITIONS

In the first-order Chapman–Enskog solution (13), which corresponds to the Navier–Stokes
equations (22), the boundary conditions on the plates (10a) and (11a) are not taken into
account. To be consistent with the fact that the term up to O(ϵ) is considered in Eq. (13), we
need to satisfy the boundary conditions up to the order of ϵ.

We first try to satisfy the boundary conditions with the Chapman–Enskog solution (13). If
we recall that the leading-order term f (0) is a local Maxwellian [Eq. (14)], it can be made to
satisfy Eqs. (10a) and (11a) by assuming that

v1 = vw(t), T = 1, at x1 = xw(t), (23a)

v1 = 0, T = 1, at x1 = d. (23b)

On the other hand, in order that the first-order term f (1) satisfies Eqs. (10a) and (11a) at the
order of ϵ, we need to impose the following conditions:

∂v1
∂x1

= 0,
∂T

∂x1
= 0, at x1 = xw(t) and d. (24)

However, the constraints on the plates, Eqs. (23) and (24), are too many as the boundary
conditions for the Navier–Stokes equations (22). Therefore, this approach does not work. But,
the fact that the choice (23) works at the zeroth order in ϵ suggests that

v1 − vw(t) = O(ϵ), T − 1 = O(ϵ), at x1 = xw(t), (25a)

v1 = O(ϵ), T − 1 = O(ϵ), at x1 = d. (25b)

In order to obtain the solution satisfying the boundary conditions, it is required to introduce
the kinetic boundary layer, the so-called Knudsen layer, with thickness of the order of ϵ adjacent
to the plates. To be more specific, we seek the solution in the following form:

f = f
(1)
CE + f (0)Φϵ+O(ϵ2) = f (0)(1 + Ψϵ+Φϵ) +O(ϵ2), (26)
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where we use Eqs. (14) and (15), and Φ is the correction inside the Knudsen layer. We note
that Φ has a length scale of variation of the order of ϵ in the direction normal to the boundary
and vanishes outside the Knudsen layer. The correction is introduced only at the order of ϵ
because, as we saw, the leading-order term f (0) of the Chapman–Enskog expansion could be
made to satisfy the boundary conditions.

The analysis of the Knudsen-layer correction Φ determines the boundary conditions for the
Navier–Stokes equations (22) that are correct up to the order of ϵ. Leaving the detailed analysis
of Φ and the process of deriving the boundary conditions in Appendix B, we summarize the
resulting boundary conditions here, that is,

v1 − vw(t) = 0, T − 1 =
1

ρ

∂v1
∂x1

αv ϵ+
1

ρ

∂T

∂x1
αT ϵ at x1 = xw(t), (27a)

v1 = 0, T − 1 =
1

ρ

∂v1
∂x1

αv ϵ−
1

ρ

∂T

∂x1
αT ϵ at x1 = d, (27b)

where αv and αT are constants that depend on the model for the intermolecular collision. For
hard-sphere molecules and for the BGK model, they are given as

αv = 0.45957, αT = 2.4001, (hard sphere), (28a)

αv = 0.44045, αT = 1.30272, (BGK). (28b)

These values are for the diffuse reflection condition. For different boundary conditions of ordi-
nary type, these constants take different values, the form of the boundary conditions (27) being
unchanged. Although the velocity v1 is the same as that of the plate, the temperature T differs
from that of the plates 1, that is, there is a temperature jump of O(ϵ). The term containing αT

is the usual temperature jump proportional to the temperature gradient normal to the plates.
The term containing αv is the jump proportional to the normal stress, which becomes higher
order in the steady problems with small Mach number flows. We note that [15] contains the
numerical analysis of the present problem using the compressible Navier–Stokes equations with
slip boundary conditions. However, the temperature jump condition used there includes neither
the term proportional to the normal stress nor the factor 1/ρ [cf. Eq. (27)]. In the linearized
problem, ρ is replaced by its reference value ρ = 1, so that the factor 1/ρ does not appear. But
in the nonlinear problem, there is a significant density change in the gas, and the temperature
jump should be proportional to the local Knudsen number, not the global one. Since the local
Knudsen number is expressed as ϵ/ρ, the factor 1/ρ appears in Eq. (27).

The initial condition for the Navier–Stokes equations corresponding to that for the Boltzmann
equation, Eq. (12), is

ρ = 1, v1 = 0, T = 1, at t = 0. (29)

We are going to solve the Navier–Stokes equations (22) numerically under the boundary
conditions (27) and the initial condition (29). In the present problem, the initial condition (12)
for the Boltzmann equation is consistent with the first-order Chapman–Enskog solution (13)
and satisfies the boundary conditions (10a) and (11a) at t = 0. In addition, the left plate starts
the motion gradually with the fluid-dynamic time scale. Therefore, the initial layer does not
appear. In other words, the Navier–Stokes equations with the initial condition (29) describe
the initial stage of the gas motion correctly.

VI. NUMERICAL METHOD

In this section, we explain the numerical method used in the computation of Eqs. (22), (27),
and (29). For brevity, we omit the subscript 1 of x1 and v1 in the present section, i.e., we let

x = x1, v = v1. (30)

A. Numerical scheme

Let us divide the region of the gas xw(t) ≤ x ≤ d into N cells by the grid points xj(t)
(j = 0, ..., N) with x0(t) = xw(t) and xN (t) = d, which move with time. In the case of uniform
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cells, xj(t) = xw(t)+(j/N)[d−xw(t)]. We call the interval xj−1(t) ≤ x ≤ xj(t) the jth cell and
define the center of the jth cell xj− 1

2
(t) as the middle point, i.e., xj− 1

2
(t) = [xj−1(t)+ xj(t)]/2.

We consider the spatially one-dimensional equation of the following form:

∂F

∂t
+

∂G

∂x
= 0, (31)

where, F (t, x) and G(t, x) are functions of x and t. For the Navier–Stokes equations, F and G
are given by

F = ρ, G = ρv, (32)

for Eq. (22a),

F = ρv, G = ρv2 +
1

2
p− 2

3
ϵΓ1(T )

∂v

∂x
, (33)

for Eq. (22b), and

F = ρv2 +
3

2
ρT, G =

(
ρv2 +

5

2
ρT

)
v − 5

4
ϵΓ2(T )

∂T

∂x
− 4

3
ϵΓ1(T )v

∂v

∂x
, (34)

for Eq. (22c). We try to discretize this equation on the system of moving grids xi(t).
Let us integrate Eq. (31) over the interval [xj−1(t), xj(t)] in x and then [t, t+∆t] in t:∫ t+∆t

t

∫ xj(τ)

xj−1(τ)

∂F

∂τ
dxdτ +

∫ t+∆t

t

∫ xj(τ)

xj−1(τ)

∂G

∂x
dxdτ = 0. (35)

The second term on the left-hand side is transformed as follows:∫ t+∆t

t

∫ xj(τ)

xj−1(τ)

∂G

∂x
dxdτ =

∫ t+∆t

t

[G(τ, xj(τ))−G(τ, xj−1(τ))]dτ

≃ [G(t, xj(t))−G(t, xj−1(t))]∆t

≃ [G(t+∆t, xj(t+∆t))−G(t+∆t, xj−1(t+∆t))]∆t

≃ [G(t, xj(t+∆t))−G(t, xj−1(t+∆t))]∆t. (36)

On the other hand, we have the following identity:

∂

∂τ

∫ xj(τ)

xj−1(τ)

F (τ, x)dx =

∫ xj(τ)

xj−1(τ)

∂F

∂τ
(τ, x)dx+ F (τ, xj(τ))ẋj(τ)− F (τ, xj−1(τ))ẋj−1(τ),

(37)

where ẋj(t) = dxj(t)/dt. Using this identity, we can transform the first term on the left-hand
side of Eq. (35) as∫ t+∆t

t

∫ xj(τ)

xj−1(τ)

∂F

∂τ
dxdτ

=

∫ t+∆t

t

∂

∂τ

∫ xj(τ)

xj−1(τ)

F (τ, x)dxdτ

−
∫ t+∆t

t

[F (τ, xj(τ))ẋj(τ)− F (τ, xj−1(τ))ẋj−1(τ)]dτ

=

∫ xj(t+∆t)

xj−1(t+∆t)

F (t+∆t, x)dx−
∫ xj(t)

xj−1(t)

F (t, x)dx

−
∫ t+∆t

t

[F (τ, xj(τ))ẋj(τ)− F (τ, xj−1(τ))ẋj−1(τ)]dτ. (38)
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With the middle point xj− 1
2
(t) between xj−1(t) and xj(t), the first two integrals on the last

line of Eq. (38) are approximated as∫ xj(t+∆t)

xj−1(t+∆t)

F (t+∆t, x)dx−
∫ xj(t)

xj−1(t)

F (t, x)dx

≃ F (t+∆t, xj− 1
2
(t+∆t))[xj(t+∆t)− xj−1(t+∆t)]

− F (t, xj− 1
2
(t))[xj(t)− xj−1(t)]. (39)

The last integral on the last line of Eq. (38) is approximated as∫ t+∆t

t

[F (τ, xj(τ))ẋj(τ)− F (τ, xj−1(τ))ẋj−1(τ)]dτ

≃ F (t, xj(t))[xj(t+∆t)− xj(t)]− F (t, xj−1(t))[xj−1(t+∆t)− xj−1(t)]. (40)

Let us denote by tk the discretized time variable. If the time step is uniform, tk+1 = tk +∆t
for any k. We use the following notation:

xk
i = xi(tk), xk

w = xw(tk), F k
i = F (tk, x

k
i ), Gk

i = G(tk, x
k
i ). (41)

If we let t = tk and t+∆t = tk+1 in Eq. (35) with the approximations (36) (the approximation
in the second line), (38), (39), and (40), we have the following discretized version of (31):

F k+1
j− 1

2

(xk+1
j − xk+1

j−1)− F k
j− 1

2
(xk

j − xk
j−1)− F k

j (x
k+1
j − xk

j )+F k
j−1(x

k+1
j−1 − xk

j−1)

+ (Gk
j −Gk

j−1)∆t = 0. (42)

From this equation, F k+1
j− 1

2

is expressed as

F k+1
j− 1

2

=
F k
j− 1

2

(xk
j − xk

j−1) + F k
j (x

k+1
j − xk

j )− F k
j−1(x

k+1
j−1 − xk

j−1)

xk+1
j − xk+1

j−1

−
Gk

j −Gk
j−1

xk+1
j − xk+1

j−1

∆t, (43)

in terms of F and G at the previous time step tk. If we use the approximation in the last line
of Eq. (36) instead of that in the second line, we have

F k+1
j− 1

2

=
F k
j− 1

2

(xk
j − xk

j−1) + F k
j (x

k+1
j − xk

j )− F k
j−1(x

k+1
j−1 − xk

j−1)

xk+1
j − xk+1

j−1

−
G(tk, x

k+1
j )−G(tk, x

k+1
j−1)

xk+1
j − xk+1

j−1

∆t. (44)

Before moving on to the details for the Navier–Stokes equations, we interprete the meaning

of Eq. (44). Let us consider the integral
∫ xk+1

j

xk+1
j−1

F (tk, x)dx and write it as

∫ xk+1
j

xk+1
j−1

F (tk, x)dx =

∫ xk
j

xk
j−1

F (tk, x)dx+

∫ xk+1
j

xk
j

F (tk, x)dx−
∫ xk+1

j−1

xk
j−1

F (tk, x)dx. (45)

We approximate this equality using the middle points as

F (tk, x
k+1
j− 1

2

)(xk+1
j − xk+1

j−1) ≃F (tk, x
k
j− 1

2
)(xk

j − xk
j−1) + F (tk, x

k
j )(x

k+1
j − xk

j )

− F (tk, x
k
j−1)(x

k+1
j−1 − xk

j−1). (46)
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Then we have,

F (tk, x
k+1
j− 1

2

) ≃
F k
j− 1

2

(xk
j − xk

j−1) + F k
j (x

k+1
j − xk

j )− F k
j−1(x

k+1
j−1 − xk

j−1)

xk+1
j − xk+1

j−1

. (47)

This expression is the same as the first fractional term on the right-hand side of Eq. (43) or
(44). This gives an interpolation, using F k

j−1, F
k
j− 1

2

, and F k
j , to give the value of F at time tk

and at position xk+1
j− 1

2

, i.e., at the middle point that is supposed to be at time tk+1. In other

words, it is an interpolation based on the conservation of F at t = tk when the jth cell moves
from [xk

j−1, x
k
j ] to [xk+1

j−1 , x
k+1
j ] [cf. Eq. (45)]. For later convenience, we rewrite Eqs. (44) and

(47) in the following form:

F k+1
j− 1

2

= F (tk, x
k+1
j− 1

2

)−
G(tk, x

k+1
j )−G(tk, x

k+1
j−1)

xk+1
j − xk+1

j−1

∆t, (48a)

F (tk, x
k+1
j− 1

2

) =
F k
j− 1

2

(xk
j − xk

j−1) + F k
j (x

k+1
j − xk

j )− F k
j−1(x

k+1
j−1 − xk

j−1)

xk+1
j − xk+1

j−1

. (48b)

Then, we can see that Eq. (48a) is a finite-difference version of Eq. (31). That is, if we

consider Eq. (31) at point x = xk+1
j− 1

2

and time t = tk, and if we replace ∂F/∂t with the

forward difference [F (tk+1, x
k+1
j− 1

2

) − F (tk, x
k+1
j− 1

2

)]/∆t and ∂G/∂x with the central difference

[G(tk, x
k+1
j ) − G(tk, x

k+1
j−1)]/(x

k+1
j − xk+1

j−1), then we obtain Eq. (48a). Therefore, the scheme

(48) consists of two steps: The interpolation required by grid displacement and the time march-
ing. This method was proposed in [41, 42].

B. Compressible Navier–Stokes equations

Now we are ready to apply the scheme (48) to the Navier–Stokes equations, for which F and
G are listed in Eqs. (32)–(34). In this subsection, we let h represent the macroscopic quantities,
i.e., h = ρ, v, and T . Suppose that at time t = tk, the quantities hk

j−1, h
k
j− 1

2

(j = 1, ..., N),

and hk
N are all known. Then, the procedure is as follows:

(i) From Eq. (48b), we obtain F (tk, x
k+1
j− 1

2

), which gives h(tk, x
k+1
j− 1

2

).

(ii) For 1 ≤ j ≤ N − 1, we obtain the values of the macroscopic quantities at the interfaces

of the new cell, h(tk, x
k+1
j ), by the linear interpolation using h(tk, x

k+1
j− 1

2

) and h(tk, x
k+1
j+ 1

2

).

For j = 0 and N (i.e., on the boundary, x = xk+1
0 and xk+1

N ), we first obtain ρ(tk, x
k+1
j )

by the linear extrapolation [i.e., ρ(tk, x
k+1
0 ) = 2ρ(tk, x

k+1
1
2

) − ρ(tk, x
k+1
1 ) and ρ(tk, x

k+1
N ) =

2ρ(tk, x
k+1
N− 1

2

) − ρ(tk, x
k+1
N−1)] and then assume that v(tk, x

k+1
j ) and T (tk, x

k+1
j ) are the same

as v(tk, x
k
j ) and T (tk, x

k
j ), respectively [i.e., v(tk, x

k+1
0 ) = v(tk, x

k
0), v(tk, x

k+1
N ) = v(tk, x

k
N ),

T (tk, x
k+1
0 ) = T (tk, x

k
0), and T (tk, x

k+1
N ) = T (tk, x

k
N )].

(iii) We obtain the pressure at the grid points p(tk, x
k+1
j ) and that at the cell centers

p(tk, x
k+1
j− 1

2

) by the equation of state p = ρT .

(iv) We update the macroscopic quantities at the cell centers by the discrete equation (48a):

we obtain F k+1
j− 1

2

and thus hk+1
j− 1

2

. In this process, we use the finite difference based on the two

points xk+1
j− 1

2

and xk+1
j+ 1

2

(the central difference when the size of the cells is uniform) for ∂v/∂x
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and ∂T/∂x in G. For example, for G in Eq. (34), we use the following G(tk, x
k+1
j ):

G(tk, x
k+1
j ) =

{
ρ(tk, x

k+1
j )[v(tk, x

k+1
j )]2 +

5

2
ρ(tk, x

k+1
j )T (tk, x

k+1
j )

}
v(tk, x

k+1
j )

− 5

4
ϵΓ2(T (tk, x

k+1
j ))

T (tk, x
k+1
j+ 1

2

)− T (tk, x
k+1
j− 1

2

)

xk+1
j+ 1

2

− xk+1
j− 1

2

− 4

3
ϵΓ1(T (tk, x

k+1
j ))v(tk, x

k+1
j )

v(tk, x
k+1
j+ 1

2

)− v(tk, x
k+1
j− 1

2

)

xk+1
j+ 1

2

− xk+1
j− 1

2

. (49)

(v) For 1 ≤ j ≤ N − 1, we obtain the interface values hk+1
j by the linear interpolation using

hk+1
j− 1

2

and hk+1
j+ 1

2

. For j = 0 and N (i.e., on the boundary, x = xk+1
0 and xk+1

N ), we first obtain

ρk+1
j by the linear extrapolation (i.e., ρk+1

0 = 2ρk+1
1
2

− ρk+1
1 and ρk+1

N = 2ρk+1
N− 1

2

− ρk+1
N−1) and

then obtain vk+1
j and T k+1

j using the boundary conditions. More specifically, the boundary

conditions, Eq. (27) discretized by using one-sided finite difference for derivatives, give the

following vk+1
j and T k+1

j :

vk+1
0 = vk+1

w , (50a)

T k+1
0 =

1

2
ρk+1
0 (xk+1

1 − xk+1
0 ) + αv ϵ (v

k+1
1
2

− vk+1
0 ) + αT ϵ T k+1

1
2

1

2
ρk+1
0 (xk+1

1 − xk+1
0 ) + αT ϵ

, (50b)

vk+1
N = 0, (50c)

T k+1
N =

1

2
ρk+1
N (xk+1

N − xk+1
N−1)− αv ϵ v

k+1
N− 1

2

+ αT ϵ T k+1
N− 1

2

1

2
ρk+1
N (xk+1

N − xk+1
N−1) + αT ϵ

. (50d)

(vi) We obtain the pressure pk+1
j and pk+1

j− 1
2

by the equation of state p = ρT .

VII. RESULTS OF COMPUTATION

In this section, we show the results of numerical computation. We consider the cases of hard-
sphere molecules [Eqs. (21a) and (28a)] and the BGK model [Eqs. (21b) and (28b)]. We recall
that the problem is characterized by three dimensionless parameters: the (modified) Knudsen
number ϵ [Eq. (9)], the dimensionless amplitude of the plate aw [Eq. (7)], and the dimensionless
distance between the center of the oscillation of the left plate and the right plate d [Eq. (5)].

In this paper, the computation is made for a single value of ϵ (ϵ = 0.1), five values of aw
(aw = 0.01, 0.02, 0.05, 0.1, and 0.5), and various values of d in the range d0 ≤ d ≤ 3d0; here, d0 =

2π
√
5/6 = 5.7357 · · · , and its dimensional counterpart d̃0, i.e., d̃0 = d0L = 2π(5RT̃0/3)

1/2/ω̃, is
the wavelength of the sinusoidal acoustic wave with angular frequency ω̃ in an inviscid (Euler)
gas.

In the present computation, we use uniform grids for x1 and uniform time steps. The basic
choices of the numerical parameters N and ∆t are: N = 2000 (d = d0) to 6000 (d = 3d0) and
∆t ≈ 1.9×10−5 (aw = 0.01 and 0.1) to 9.8×10−6 or 4.9×10−6 (aw = 0.5). We also use coarser
and finer grid systems for the accuracy tests. The details of the numerical parameters and the
accuracy tests are summarized in Appendix C.

A. Profiles of macroscopic quantities

After the start of the oscillation of the left plate at t = 0, the plate sends out expansion and
compression waves continuously. These waves interact with the waves reflected by the right
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(a)
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(b)
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(d)
x1

p

199.8 t/2π = 199.1

199.5

FIG. 2: Profiles of ρ, v1, T , and p in the time interval 199 < t/2π ≤ 200 for ϵ = 0.1, aw = 0.01, and
d = d0 (hard-sphere molecules). (a) ρ, (b) v1, (c) T , and (d) p. The thin solid lines indicate the profiles
at t/2π = 199.1, 199.2, ... 199.5, the dashed lines those at t/2π = 199.6, 199.7, ... 199.9, and the thick
solid line the profile at t/2π = 200.

plate at rest and form a complicated flow field. But, the unsteady flow field tends to converge
a time-periodic flow field after a few tens of oscillations of the plate.

In Figs. 2–6, we show the profiles of the physical quantities for hard-sphere molecules after
the time-periodic state seems to have been established. Figures 2–4 show the profiles of the
dimensionless density ρ, flow velocity v1, temperature T , and pressure p over a period 199 <
t/2π ≤ 200 (i.e., at t/2π = 199.1, 199.2, ..., 200) for ϵ = 0.1 and d = d0: Fig. 2 is for aw = 0.01,
Fig. 3 for aw = 0.1, and Fig. 4 for aw = 0.5. It should be noted that ρ, T , and p need corrections
inside the Knudsen layer in order to give correct density, temperature, and pressure, as discussed
in Appendix B 4. These corrections are omitted in Figs. 2–6 and Fig. 7 appearing later.

In the case of a small amplitude (and small Mach number) (Fig. 2), the profile of v1 [Fig. 2(b)],
which is fixed to be zero on the stationary plate, exhibits the structure similar to a standing-
wave with a node and two anti-nodes, and it is close to sinusoidal curves at t/2π = 199.5 and
200. The profiles of ρ, T , and p roughly show the two-node structure with a clearer node-
like point closer to the stationary plate (x1 ≈ 4.4). This standing-wave-like structure with
node-like and anti-node-like points is less clear for a larger amplitude (Fig. 3) though v1 still
retains the structure [Fig. 3(b)]. For a large amplitude (Fig. 4), for which the nonlinearity
becomes significant, the profiles deviate from the standing-wave-like profile, and no node-like or
anti-node-like point is observed. In this case, ρ increases almost up to twice the initial density
(ρ = 1) on the two plates, but decreases down to 60% of it in the middle of the gas. The T
becomes almost twice the initial temperature (and the plate temperature) in the middle of the
gas. There is a significant temperature jump on the resting plate because of the steep gradient
of T and that of v1 there [cf. Eq. (27b)].

Figures 5 and 6 show the profiles at ϵ = 0.1 and aw = 0.1 but for different d: d = 1.2d0
(Fig. 5) and 2d0 (Fig. 6). For a slightly wider gap between the two plates (Fig. 5), the feature
of the profile changes from that of Fig. 3. The standing-wave-like structure becomes less clear
for v1 but clearer for ρ, T , and p. In particular, ρ and T exhibit profiles with two node-like
points and three anti-node-like points rather clearly [Figs. 5(a) and 5(c)]. On the other hand,
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FIG. 3: Profiles of ρ, v1, T , and p in the time interval 199 < t/2π ≤ 200 for ϵ = 0.1, aw = 0.1, and
d = d0 (hard-sphere molecules). (a) ρ, (b) v1, (c) T , and (d) p. See the caption of Fig. 2.
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FIG. 4: Profiles of ρ, v1, T , and p in the time interval 199 < t/2π ≤ 200 for ϵ = 0.1, aw = 0.5, and
d = d0 (hard-sphere molecules). (a) ρ, (b) v1, (c) T , and (d) p. See the caption of Fig. 2.
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FIG. 5: Profiles of ρ, v1, T , and p in the time interval 299 < t/2π ≤ 300 for ϵ = 0.1, aw = 0.1, and
d = 1.2d0 (hard-sphere molecules). (a) ρ, (b) v1, (c) T , and (d) p. The thin solid lines indicate the
profiles at t/2π = 299.1, 299.2, ... 299.5, the dashed lines those at t/2π = 299.6, 299.7, ... 299.9, and
the thick solid line the profile at t/2π = 300.

for d = 2d0 (Fig. 6), the standing-wave-like structure is clear (in particular, in the right half of
the gas region) only for v1 [Fig. 6(b)]. This difference between the profile of v1 and those of ρ,
T , and p is due to the difference in constraint on the plates. The v1 takes the imposed values
on the plate [cf. Eq. (27)], which corresponds to the fixed-end condition for a standing wave,
whereas no constraint is imposed on ρ on the plates, which corresponds to the free-end condition
for a standing wave. The condition for the temperature on the plates is somewhat intermediate,
since the jump condition, Eq. (27), does not fix the values completely. Of course, the situation
is not so simple because there is the viscous dissipation, and v1, ρ, and T are not independent
but interact nonlinearly. Nevertheless, some behavior of the profiles may be understood from
these properties. For instance, the oscillating plate inputs kinetic energy into the gas, so that
the velocity field is affected by the plate most directly. In the cases of d = d0 (Fig. 3) and
2d0 (Fig. 6), the standing-wave-like profile of v1 is observed, as mentioned above. For d = d0,
the amplitude of v1 in the gas exceeds the input amplitude aw = 0.1 in the gas [Fig. 3(b)] in
spite of the fact that the viscous dissipation should decay the amplitude. This amplification
is caused by a sort of resonance (see the last paragraph in Sec. VIIB). It is also observed for
d = 2d0 [Fig. 6(b)]. In this case, because of the wider gas region, the waves attenuate more.
Nevertheless, the amplitude of v1 reaches almost the input value 0.1 in the gas. For d = 1.2d0
[Fig. 5(b)], the amplitude of v1 is smaller than the input value.

In Fig. 7, the profiles corresponding to Fig. 4 (ϵ = 0.1, aw = 0.5, and d = d0) are shown for
the BGK model. They are qualitatively the same as those in Fig. 4, but the maximum values
of the density and temperature during one period is larger.

B. Momentum and energy transfer

Let us denote by PL and PR the x1 component of the momentum transferred from the left
(oscillating) plate to the gas and that transferred from the gas to the right (resting) plate per
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FIG. 6: Profiles of ρ, v1, T , and p in the time interval 399 < t/2π ≤ 400 for ϵ = 0.1, aw = 0.1, and
d = 2d0 (hard-sphere molecules). (a) ρ, (b) v1, (c) T , and (d) p. The thin solid lines indicate the
profiles at t/2π = 399.1, 399.2, ... 399.5, the dashed lines those at t/2π = 399.6, 399.7, ... 399.9, and
the thick solid line the profile at t/2π = 400.

unit area and per unit time, respectively. We also denote by EL and ER the energy transferred
from the left plate to the gas and that from the gas to the right plate, respectively. Then, if we
neglect the terms of O(ϵ2), they are expressed in the following form:

PL(t) =

(
p− 4

3
ϵΓ1

∂v1
∂x1

)
x1=xw(t)

, (51a)

PR(t) =

(
p− 4

3
ϵΓ1

∂v1
∂x1

)
x1=d

, (51b)

EL(t) =

[(
p− 4

3
ϵΓ1

∂v1
∂x1

)
vw(t)−

5

4
ϵΓ2

∂T

∂x1

]
x1=xw(t)

, (51c)

ER(t) =

(
−5

4
ϵΓ2

∂T

∂x1

)
x1=d

. (51d)

These formulas are not subject to the Knudsen-layer corrections, as discussed in Appendix B 4.
In addition, we introduce the time average of PL, PR, EL, and ER over one period from t− 2π
to t and denote them with an overline, i.e.,

W(t) =
1

2π

∫ t

t−2π

W(t′)dt′, (52)

where W stands for PL, PR, EL, or ER.

Figures 8 and 9 show (PL−1)/aw, (PR−1)/aw, EL/aw, and ER/aw at a long time, for which
the time-periodic state seems to have been reached, versus d/d0 at ϵ = 0.1 for several values
of aw: Fig. 8 is for hard-sphere molecules, and Fig. 9 for the BGK model. The shown results
are at t/2π = 200 for 1 ≤ d/d0 ≤ 2, at t/2π = 400 for 2 < d/d0 ≤ 2.5, and at t/2π = 600 for

2.5 < d/d0 ≤ 3. As is seen from the figures, PL = PR and EL = ER hold. This also indicates



16

(a)
x1

ρ

199.8

t/2π = 199.1

199.5

(b)
x1

v1

199.8
t/2π = 199.1

199.5

(c)
x1

T

199.8
t/2π = 199.1

199.5

(d)
x1

p

199.8 t/2π = 199.1

199.5

FIG. 7: Profiles of ρ, v1, T , and p in the time interval 199 < t/2π ≤ 200 for ϵ = 0.1, aw = 0.5, and
d = d0 (BGK model). (a) ρ, (b) v1, (c) T , and (d) p. The thin solid lines indicate the profiles at
t/2π = 199.1, 199.2, ... 199.5, the dashed lines those at t/2π = 199.6, 199.7, ... 199.9, and the thick
solid line the profile at t/2π = 200.

that the time-periodic state has been established. If PL, PR, EL, and ER make sinusoidal

oscillation in time with period 2π as in the case of linear setting, PL−1, PR−1, EL, and ER all
vanish. In fact, when aw is small (aw = 0.01), these quantities are very small. For aw = 0.01,

PL − 1 and PR − 1 are negative for all d/d0 (≤ 3) in Fig. 8 and for d/d0 ≲ 2 in Fig. 9. This is
because the average distance between the plates after long time is d, which is longer than the
initial distance d−aw. Therefore, the stationary plate is pulled (relative to the pressure exerted
on the plate in the initial equilibrium state) by the gas, and the same is true for the oscillating
plate. As d increases, the difference between d and d − aw becomes small, so that the pulling

effect becomes small. Indeed, PL − 1 and PR − 1 are closer to zero for larger d/d0. When the

amplitude (and the Mach number) aw becomes large (aw = 0.01 → 0.5), PL − 1 and PR − 1

become positive and larger, and EL and ER also increase. In other words, when aw is not small,
the stationary plate is pushed outward (i.e., in the positive x1 direction), on the average, by
the oscillating plate via the gas. The stationary plate also receives the energy (for all d), on
the average, from the oscillating plate via the gas. The mechanism of this average momentum
and energy transfer is explained in view of the interaction of the gas molecules with the moving
plate in [21] (see Sec. 3.3 in [21]). Therefore, we do not repeat it here. If there is no stationary

plate that receives the positive momentum relative to the initial pressure (PR− 1 > 0), the gas
flows in the x1 direction, i.e., toward infinity. This flow is called the acoustic stream [43, 44].

It is seen from Figs. 8 and 9 that both PL (or PR) and EL (or ER) exhibit local maxima and
minima almost periodically with respect to d/d0. When aw is small, the period is almost equal
to d0/2, that is, these quantities take local maxima near d/d0 = n/2 with integer n and local
minima near d/d0 = n/2 + 1/4. For larger values of aw (aw = 0.1 → 0.5), the period tends to
increase.

The appearance of the local maxima at d/d0 ≈ n/2 for small aw is reasonable for the following
reason. Let us consider a column of an inviscid (or Euler) gas and a sinusoidal sound wave
propagating along the column. If the column has reflective ends and its length is a multiple
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FIG. 8: Average momentum and energy transfer over a period at the time-periodic state for ϵ = 0.1
and some aw (hard-sphere molecules). (a), (b) (PL − 1)/aw and (PR − 1)/aw vs d/d0, (c), (d) EL/aw

and ER/aw vs d/d0. The shown results are at t/2π = 200 for 1 ≤ d/d0 ≤ 2, at t/2π = 400 for
2 < d/d0 ≤ 2.5, and at t/2π = 600 for 2.5 < d/d0 ≤ 3.

of d0/2 = π(5RT̃0/3)
1/2/ω̃, the natural frequency of the column coincides with ω̃. That is,

a sinusoidal standing wave may be formed, and if one of the ends oscillates sinusoidally with
angular frequency ω̃, the amplitude of the standing wave is amplified. In other words, the
resonance takes place. If there is no energy dissipation, the amplitude increases indefinitely.
In a real gas, however, the energy dissipates and escapes from the column in the form of heat
through the ends, so that the amplitude remains finite even in the case of resonance, i.e., even
when d/d0 ≈ n/2. Nevertheless, the amplitude in these cases is still larger than that for other
d. In other words, more energy and momentum are transmitted to the gas in this situation.
This roughly explains the appearance of the local maxima at d/d0 ≈ n/2 when the amplitude
of the oscillation of the plate aw is small.

C. Approach to time-periodic state

As mentioned in Sec. VIIA, the motion of the gas approaches a time-periodic state as time
proceeds. In this section, we investigate the speed of approach to the time-periodic state. Here,
we consider the case of ϵ = 0.1, aw = 0.1, and d = d0 and regard the numerical solution for
199 < t/2π ≤ 200 as the time-periodic solution. For any given time t, an integer n and a
number τ ∈ (0, 2π] such that t = (n − 1) · 2π + τ are uniquely determined, i.e., n − 1 is the
maximum integer that is smaller than t/2π. Then, we define the difference between the solution
at time t and the time-periodic solution by

hdiff(t, x1) = h(t, x1)− h(199 · 2π + τ, x1), (53)
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FIG. 9: Average momentum and energy transfer over a period at the time-periodic state for ϵ = 0.1
and some aw (BGK model). (a), (b) (PL − 1)/aw and (PR − 1)/aw vs d/d0, (c), (d) EL/aw and ER/aw

vs d/d0. The shown results are at t/2π = 200 for 1 ≤ d/d0 ≤ 2, at t/2π = 400 for 2 < d/d0 ≤ 2.5, and
at t/2π = 600 for 2.5 < d/d0 ≤ 3.

where h represents the macroscopic quantities, i.e., h = ρ, v1, T , and p. Obviously, h(199 ·2π+
τ, x1) (0 < τ ≤ 2π) indicates our time-periodic solution. If we plot |hdiff | at a fixed x1 as a
function of t, it is oscillatory as is shown schematically in Fig. 10. Therefore, we pick up the
peaks indicated by small circles in the figure. Each of these peaks corresponds to the maximum
after the previous peak and can be picked up by the following procedure:

1. We first prepare the time-series data of all local maxima of |hdiff |.

2. We compare one of the local maxima with the next one. If the former maxima in smaller
than the latter, we remove the former one from the time-series data.

3. We repeat the procedure 2 until there is no local maximum to be removed.

In Fig. 11, we show the curves joining the peaks thus obtained in semi-logarithmic scale for
x1 = aw = 0.1 [Fig. 11(a)], x1 = (aw + d)/2 = (0.1 + d0)/2 = 2.9178 · · · [Fig. 11(b)], and
x1 = d = d0 = 5.7357 · · · [Fig. 11(c)] [v1 is excluded in Fig. 11(c) because v1 = 0 at x1 = d].
For all ρ, v1, T , and p and at all three points, the curve tends to approach a straight line
after the initial stage, and the gradients of all lines are almost the same for each of the hard-
sphere molecules and the BGK model. If we denote the function corresponding to the curve by
F (t, x1), then we have |hdiff(t, x1)| ≤ F (t, x1) and log10 F (t, x1) ≈ −α′t + β′ with α′ and β′

being constants. This is equivalent to write

|hdiff(t, x1)| ≤ F (t, x1) ≈ C exp(−αt), for t ≫ 1, (54)

where C and α (= α′ ln 10 = α′ × 2.302585 · · · ) are constants, and α is seemingly independent
of x1 and the physical quantities but dependent on the molecular model. The approach to
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|hdiff|

t/2π

FIG. 10: Schematic figure for |hdiff | vs t. The small circle ◦ indicates the peaks, each of which
corresponds to the maximum after the previous peak.

|hdiff |

t/2π
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BGK

HS

|hdiff |
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|hdiff |

t/2π

(c)
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FIG. 11: Curves joining the peaks obtained by the procedures 1-3 for ϵ = 0.1, aw = 0.1, and d = d0. (a)
at x1 = aw = 0.1, (b) x1 = (aw + d)/2 = (0.1 + d0)/2 = 2.9178 · · · , and (c) x1 = d = d0 = 5.7357 · · · .
The solid lines indicate |ρdiff |, the dashed lines |v1diff |, the dash-dotted lines |Tdiff |, and the dash-double-
dotted lines |pdiff |. The curve of |v1diff | is excluded in (c) because v1 = 0 at x1 = d.

the time-periodic state is faster for hard-sphere molecules. The curves of F (t, x1) cease to
decrease when F (t, x1) becomes 10−5 to 10−7. This is probably because the computation has
reached the limit of accuracy. In fact, we have confirmed that the part for the exponential
decay extends for finer space grids and time steps. We now pick up the interval of t in which
each curve corresponding to F (t, x1) seems to be a straight line, that is, we take the interval
10 < t/2π ≤ 30 for hard-sphere molecules and 20 < t/2π ≤ 50 for the BGK model. Then,
for this interval, we construct an approximate straight line, by the least square method, for



20

each of ρ, v1, T , and p and for each of the three points of x1 as well as two additional points
x1 = (3aw+d)/4 = (0.3+d0)/4 and x1 = (aw+3d)/4 = (0.1+3d0)/4. As a result, the gradient
−α′ of the curve of log10 F is obtained as −1.65×10−2 (9 cases out of 19 cases), −1.64×10−2 (6
cases), −1.66×10−2 (2 cases), −1.62×10−2 (1 case) and −1.67×10−2 (1 case) for hard-sphere
molecules and −9.8 × 10−3 (7 cases out of 19 cases), −9.9 × 10−3 (5 cases), −10.0 × 10−3 (3
cases), −9.7×10−3 (2 cases) and −10.1×10−3 (2 cases) for the BGK model. Therefore, we can
conclude that the factor α in Eq. (54) is approximately given as α = 3.80×10−2 for hard-sphere
molecules and α = 2.26× 10−2 for the BGK model.

VIII. CONCLUDING REMARKS

In the present paper, we investigated the unsteady motion of a rarefied gas between two
parallel plates caused when one of the plates starts a harmonic oscillation in its normal di-
rection. We considered the case where the speed of oscillation of the plate is not necessarily
small compared to the sonic speed (i.e., fully nonlinear setting), but the Knudsen number is
small. Therefore, as an alternative to the Boltzmann or its model equations, for which accurate
numerical computation for a long time is difficult for small Knudsen numbers, we decided to
use the compressible Navier–Stokes equations and slip boundary conditions. However, it was
practically impossible to find appropriate slip (or jump) boundary conditions for the compress-
ible Navier–Stokes equations that can be applied immediately to the present problem. For
example, one can find formulas for slip boundary conditions for compressible Navier–Stokes
equations in [37]. However, the boundary is assumed to be at rest, and the numerical values
of the coefficients in the formulas are not given. Therefore, we revisited this classical problem
and derived the correct temperature jump condition for the present problem (Appendix B).

After we had prepared the boundary condition, we solved the compressible Navier–Stokes
system numerically by a method suitable for the present problem containing a plate moving in
its normal direction (Sec. VI). The result shows that the flow field approaches the time-periodic
state after a few tens of oscillations of the plate. The properties of this time-periodic state
were investigated in detail (Secs. VIIB and VIIC). When the speed of oscillation of the plate
is not very small compared to the sonic speed, the momentum in the outward direction and the
energy, averaged over a period, is transmitted to the stationary plate by the oscillating plate
(Sec. VIIB). This confirms the earlier result [21] based on the BGK model for the intermediate
Knudsen numbers though the computation there was carried out until shorter times.
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Appendix A: The Boltzmann collision integral

1. Collision operators

In this appendix, we summarize the collision integral and related matters. The notation in the
present paper is basically based on [25] (see Sec. 1.9 and Appendix A in [25]). However, since we
avoided usingˆto indicated dimensionless quantities in the main text, there are some differences

in notations. For instance, [f, g, J(f, g)] in this appendix correspond to [f̂ , ĝ, Ĵ(f̂ , ĝ)] in [25].
In addition, we occasionally use the bold face to indicate vectors and the dot · the scalar
product, e.g., ζ = ζi and α · (ζ∗ − ζ) = αj(ζ∗j − ζj), in Appendices A and B.
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We start with the definition of the bilinear form J(f, g):

J(f, g) =
1

2

∫
ζ∗∈R3,α∈S2

(f ′g′∗ + f ′
∗g

′ − fg∗ − f∗g) B̂ dΩ(α) dζ∗. (A1)

Here, we used the convention, i.e., f = f(ζ), f∗ = f(ζ∗), f
′ = f(ζ′), f ′

∗ = f(ζ′
∗), and the same

for g; ζ, which was denoted by ζi in the main text, is the dimensionless molecular velocity; when
a pair of molecules with velocities ζ and ζ∗ collide, the velocities of the respective molecules
after collision ζ′ and ζ′

∗ are expressed as

ζ′ = ζ + [α · (ζ∗ − ζ)]α, ζ′
∗ = ζ∗ − [α · (ζ∗ − ζ)]α, (A2)

where α is the unit vector in the direction of ζ′ − ζ; dζ∗ = dζ∗1dζ∗2dζ∗3 and dΩ(α) is the

solid-angle element around α; B̂ is a non-negative function of |α · (ζ∗−ζ)|/|ζ∗−ζ| and |ζ∗−ζ|,
i.e.,

B̂ = B̂

(
|α · (ζ∗ − ζ)|

|ζ∗ − ζ|
, |ζ∗ − ζ|

)
, (A3)

which depends on the intermolecular potential, and B̂ = |α · (ζ∗ − ζ)|/4
√
2π for hard-sphere

molecules (see Sec. 1.9 and Appendix A in [25] for the details of B̂, noting that B̂ here is the

same as B̂ in [25]).
According to Sec. 1.9 in [25], the mean collision frequency ν̄c0 and the mean free path l0 in

the equilibrium state at rest with density ρ̃0 and temperature T̃0 are, respectively, expressed as

ν̄c0 = (ρ̃0/m)B0, l0 = (2/
√
π)c̃0/ν̄c0 = (2/

√
π)c̃0/(ρ̃0/m)B0, (A4)

where B0 is defined by

B0 =
1

ρ̃20

∫
f̃0(ζ̃)f̃0(ζ̃∗)B

(
|α · (ζ̃∗ − ζ̃)|

|ζ̃∗ − ζ̃|
, |ζ̃∗ − ζ̃|

)
dΩ(α)dζ̃dζ̃∗. (A5)

Here, f̃0(ζ̃) is the dimensional Maxwellian with density ρ̃0, velocity 0, and temperature T̃0, i.e.,

f̃0(ζ̃) = ρ̃0(2πRT̃0)
−3/2 exp(−|ζ̃|2/2RT̃0), and B is the dimensional counterpart of B̂ appearing

in the dimensional form of the Boltzmann collision integral. In fact, B̂ is defined by B̂ = B/B0.
For hard-sphere molecules with diameter dm,

ν̄c0 = 2
√
2πc̃0d

2
m(ρ̃0/m), l0 = 1/

√
2πd2m(ρ̃0/m). (A6)

When the intermolecular potential extends to infinity, the integral in Eq. (A5) generally di-
verges. See Sec. 1.9 in [25] for the treatment in such a case.

The linearized collision operator L( · ) is defined by

L(φ) = 2J(E, Eφ)/E

=

∫
E(ζ∗)(φ

′
∗ + φ′ − φ∗ − φ) B̂

(
|(ζ∗ − ζ) ·α|

|ζ∗ − ζ|
, |ζ∗ − ζ|

)
dΩ(α)dζ∗, (A7)

where ζ∗ = (ζ2∗1 + ζ2∗2 + ζ2∗3)
1/2, E( · ) is the function defined by Eq. (16b), and the same

convention as in Eq. (A1) is used, i.e., φ∗ = φ(ζ∗), φ
′ = φ(ζ′), etc. Now we introduce the

following extended linearized collision operator La( · ):

La(φ) =

∫
E(ζ∗)(φ

′
∗ + φ′ − φ∗ − φ) B̂a

(
|(ζ∗ − ζ) ·α|

|ζ∗ − ζ|
, |ζ∗ − ζ|

)
dΩ(α)dζ∗, (A8)

where

B̂a = B̂a

(
|α · (ζ∗ − ζ)|

|ζ∗ − ζ|
, |ζ∗ − ζ|

)
=

1√
a
B̂

(
|α · (ζ∗ − ζ)|

|ζ∗ − ζ|
,
√
a|ζ∗ − ζ|

)
, (A9)
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and a is a positive quantity independent of ζ. Obviously, L1(φ) = L(φ) holds, and for hard-
sphere molecule, La(φ) = L(φ) holds.

For the BGK model, the dimensionless collision integral J(f, f) in Eq. (8) is replaced by the
following JBGK(f):

JBGK(f) = ρ (fe − f), (A10)

where fe is a local Maxwellian

fe =
ρ

(πT )3/2
exp

(
− (ζi − vi)

2

T

)
, (A11)

and ρ, vi, and T are defined by Eq. (3a). In this model, the collision frequency νc of a molecule

with velocity ζ̃i depends neither on ζ̃i nor on the shape of f̃ and is assumed to be Acρ̃, where Ac

is a constant. This corresponds to the Maxwell molecules in which the intermolecular potential
is proportional to 1/r4 with r the distance between two molecules. Therefore, the mean collision
frequency ν̄c0 and the mean free path l0 in the equilibrium state at rest with density ρ̃0 and

temperature T̃0 become

ν̄c0 = Acρ̃0, l0 = (2/
√
π)c̃0/Acρ̃0. (A12)

The linearized collision operators LaBGK( · ) and LBGK( · ) for the BGK model, which corre-
spond to La( · ) and L( · ), respectively, take the following forms:

√
aLaBGK(φ) =

∫ [
1 + 2ζ · ζ∗ +

2

3

(
ζ2 − 3

2

)(
ζ2∗ − 3

2

)]
φ(ζ∗)E(ζ∗)dζ∗ − φ(ζ), (A13a)

LBGK(φ) = L1BGK(φ), (A13b)

where ζ = (ζ21 + ζ22 + ζ23 )
1/2.

2. Functions A and B(0)

The functions A(C, T ) and B(0)(C, T ) occurring in the first-order term of the Chapman–
Enskog solution (15) are defined as follows: A(ζ, a) is the solution of the integral equation

La[ζiA(ζ, a)] = −ζi

(
ζ2 − 5

2

)
, (A14)

with the subsidiary condition ∫ ∞

0

ζ4A(ζ, a)E(ζ)dζ = 0, (A15)

and the function B(0)(ζ, a) is the solution of the integral equation

La

[(
ζiζj −

1

3
ζ2δij

)
B(0)(ζ, a)

]
= −2

(
ζiζj −

1

3
ζ2δij

)
. (A16)

In [25], A(ζ, 1) is denoted by A(ζ), and B(0)(ζ, 1) by B(ζ):

A(ζ, 1) = A(ζ), B(0)(ζ, 1) = B(ζ). (A17)

Thus, for hard-sphere molecules, A(ζ, a) = A(ζ) and B(0)(ζ, a) = B(ζ) for any a. The numer-
ical values of A(ζ) and B(ζ) for hard-sphere molecules are tabulated in Table 3.1 of [25] (see
also [45, 46]). These numerical data make it possible to perform numerical integration of the
integrals in Eq. (19) and give Γ1 and Γ2 shown in Eq. (21a) [46].

For the BGK model, Eq. (A14) [with Eq. (A15)] and Eq. (A16), with La = LaBGK, give the
following solutions:

A(ζ, a) =
√
a

(
ζ2 − 5

2

)
, B(0)(ζ, a) = 2

√
a, (A18)

which give Γ1 and Γ2 shown in Eq. (21b).
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Appendix B: Derivation of the jump boundary conditions

In this appendix, we give an outline of the derivation of the jump boundary conditions (27).

1. Knudsen layer: Equation

We restrict ourselves to the derivation of the condition (27a) on the oscillatig plate. From the
result, the condition (27b) on the resting plate is derived immediately. Let us consider Eq. (26)
near the moving plate x1 = xw(t). Then, Φ is appreciable only in the thin layer of thickness of
the order of ϵ adjacent to the plate. If we substitute Eq. (26) into the Boltzmann equation (8)
and note the fact that

∂f
(1)
CE

∂t
+ ζ1

∂f
(1)
CE

∂x1
=

1

ϵ
J(f

(1)
CE, f

(1)
CE) +O(ϵ), (B1)

we have

ϵ

(
∂f (0)Φ

∂t
+ ζ1

∂f (0)Φ

∂x1

)
= 2J(f

(1)
CE, f

(0)Φ) + ϵJ(f (0)Φ, f (0)Φ) +O(ϵ). (B2)

Further, if we note that

∂f (0)Φ

∂t
+ ζ1

∂f (0)Φ

∂x1
= f (0)

(
∂Φ

∂t
+ ζ1

∂Φ

∂x1

)
+Φf (0) ·O(1), (B3a)

2J(f
(1)
CE, f

(0)Φ) = 2J(f (0), f (0)Φ) + ϵf (0) ·O(Φ), (B3b)

Eq. (B2) is transformed to

∂Φ

∂t
+ ζ1

∂Φ

∂x1
=

1

ϵf (0)
· 2J(f (0), f (0)Φ) +O(Φ). (B4)

Let us introduce the new coordinate system (t̂, η, ζ̂1, ζ̂2, ζ̂3) by

t̂ = t, ϵη = x1 − xw(t), ζ̂1 = ζ1 − vw(t), ζ̂2 = ζ2, ζ̂3 = ζ3, (B5)

and change the variables from (t, x1, ζ1, ζ2, ζ3) to (t̂, η, ζ̂1, ζ̂2, ζ̂3). More specifically, we write

Φ(t, x1, ζ1, ζ2, ζ3) = Φ̂(t̂, η, ζ̂1, ζ̂2, ζ̂3), (B6)

and assume that

∂Φ̂

∂η
= O(Φ̂) and Φ̂ → 0 (rapidly) as η → ∞. (B7)

Then, LHS of (B4) becomes

LHS =
∂Φ̂

∂t̂
+

1

ϵ
ζ̂1

∂Φ̂

∂η
− v̇w(t̂)

∂Φ̂

∂ζ̂1
. (B8)

On the other hand, Eq. (A1) gives, with the same convention,

2J(f (0), f (0)Φ)(f (0))−1 =

∫
f
(0)
∗ (Φ′

∗ +Φ′ − Φ∗ − Φ) B̂

(
|(ζ∗ − ζ) ·α|

|ζ∗ − ζ|
, |ζ∗ − ζ|

)
dΩ(α)dζ∗,

(B9)

where

f
(0)
∗ =

ρ

(πT )3/2
exp

(
− (ζ∗1 − v1)

2 + ζ2∗2 + ζ2∗3
T

)
, (B10)
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and the fact that f (0)′f
(0)′
∗ = f (0)f

(0)
∗ has been used. We consider the range of η for which Φ is

appreciable, i.e., η = O(1). Then, for h = ρ, v1, and T , we can write

h = h(t̂, xw(t̂) + ϵη) = hB(t̂) +O(ϵη), (B11)

where hB(t̂) ≡ h(t̂, xw(t̂)) indicates the value on the plate. If we assume Eq. (25), then from
Eq. (B11) we have

ρ = ρB(t̂) +O(ϵη), v1 = vw(t̂) +O(ϵ(η + 1)), T = 1 +O(ϵ(η + 1)). (B12)

Therefore, f
(0)
∗ can be expressed as

f
(0)
∗ =

ρB
π3/2

exp
(
−[(ζ∗1 − vw)

2 + ζ2∗2 + ζ2∗3]
)
[1 +O(ϵ(η + 1))]

= ρBE(ζ̂∗)[1 +O(ϵ(η + 1))]. (B13)

In the second line, the new variable ζ̂i [Eq. (B5)] and E(·) defined in Eq. (16b) are used; more

specifically, ζ̂∗i is defined by Eq. (B5) with ζi = ζ∗i, and ζ̂∗ = (ζ̂2∗1 + ζ̂2∗2 + ζ̂2∗3)
1/2. With this

expression, Eq. (B9) can be expressed in terms of the new variables as

2J(f (0), f (0)Φ)(f (0))−1 = ρB

∫
E(ζ̂∗)(Φ̂

′
∗ + Φ̂′ − Φ̂∗ − Φ̂)

× B̂

(
|(ζ̂∗ − ζ̂) ·α|

|ζ̂∗ − ζ̂|
, |ζ̂∗ − ζ̂|

)
dΩ(α)dζ̂∗ +O(ϵ(η + 1)Φ̂),

(B14)

where ζ̂ ′i and ζ̂ ′∗i are defined by Eq. (B5) with ζi = ζ ′i and ζi = ζ ′∗i, respectively, so that ζ̂i, ζ̂∗i,

ζ̂ ′i, and ζ̂ ′∗i satisfy the same relations as Eq. (A2). In Eq. (B14), the same convention is used:

More specifically, Φ̂ = Φ̂(t̂, η, ζ̂i), Φ̂∗ = Φ̂(t̂, η, ζ̂∗i), Φ̂
′ = Φ̂(t̂, η, ζ̂ ′i), and Φ̂′

∗ = Φ̂(t̂, η, ζ̂ ′∗i).
In summery, Eqs. (B8) and (B14) lead to the following expression of Eq. (B4):

ζ̂1
∂Φ̂

∂η
= ρBL(Φ̂) +O(ϵ(η + 1)Φ̂), (B15)

where the linearized collision operator defined by Eq. (A7) is used, i.e.,

L(Φ̂) =
∫

E(ζ̂∗)(Φ̂
′
∗ + Φ̂′ − Φ̂∗ − Φ̂) B̂

(
|(ζ̂∗ − ζ̂) ·α|

|ζ̂∗ − ζ̂|
, |ζ̂∗ − ζ̂|

)
dΩ(α)dζ̂∗. (B16)

Since Φ̂ vanishes rapidly as η → ∞, the term of O(ϵ(η+1)Φ̂) in Eq. (B15), which is of O(ϵ) for
finite η, vanish rapidly as η → ∞. If we neglect this term, introduce a new coordinate y by

y = ρBη, (B17)

and denote

Φ̂(t̂, η, ζ̂i) = ϕ(t̂, y, ζ̂i), (B18)

then, we have the following equation for ϕ:

ζ̂1
∂ϕ

∂y
= L(ϕ) (0 < y < ∞). (B19)

2. Knudsen layer: Boundary condition

Next, we derive the boundary conditions for Eq. (B19). The velocity distribution function of
the form of Eq. (26) has to satisfy the boundary condition on the plate, Eq. (10a), that is,

f
(0)
B (1 + ΨBϵ+ΦBϵ) =

σw

π3/2
exp

(
−
{
[ζ1 − vw(t)]

2 + ζ22 + ζ23
})

,

for ζ1 − vw(t) > 0, (B20a)

σw = −2π1/2

∫
ζ1−vw(t)<0

[ζ1 − vw(t)] f
(0)
B (1 + ΨBϵ+ΦBϵ)dζ, (B20b)
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where the subscript B indicates the value on the plate, i.e., at x1 = xw(t) or η = 0, and the
terms of O(ϵ2) are omitted.

Now we recall Eq. (25a), i.e., v1B − vw(t) = O(ϵ) and TB − 1 = O(ϵ) and let

v1B − vw(t) = v̌1ϵ, TB − 1 = Ť ϵ. (B21)

Then, v̌1 = O(1) and Ť = O(1). By expanding v1B around vw(t) and TB around 1 in f
(0)
B and

ΨB , the boundary value f
(0)
B (1 + ΨBϵ) is expressed in the following form:

f
(0)
B (1 + ΨBϵ) = ρBE(ζ̂)

[
1 + 2ζ̂1v̌1ϵ+

(
ζ̂2 − 3

2

)
Ť ϵ

− 1

ρB

(
ζ̂21 − 1

3
ζ̂2
)(

∂v1
∂x1

)
B

B(0)(ζ̂, 1) ϵ

− 1

ρB
ζ̂1

(
∂T

∂x1

)
B

A(ζ̂, 1) ϵ+O(ϵ2)

]
, (B22)

where the variable ζ̂i [Eq. (B5)] and E(·) [Eq. (16b)] are used, and ζ̂ = (ζ̂21 + ζ̂22 + ζ̂23 )
1/2. If we

use this expression in the integrand in Eq. (B20b) and carry out possible integrations, we have
the following expression for σw:

σw = ρB [1 + δϵ+O(ϵ2)], (B23a)

δ = −
√
πv̌1 +

1

2
Ť − 1

3ρB

(
∂v1
∂x1

)
B

∫ ∞

0

r5B(0)(r, 1)e−r2dr

− 2
√
π

∫
ζ̂1<0

ζ̂1ΦBE(ζ̂)dζ̂. (B23b)

Let us note that

ΦB = Φ(t, xw(t), ζi) = Φ̂(t̂, η = 0, ζ̂i) = ϕ(t̂, y = 0, ζ̂i). (B24)

Then, Eq. (B20), together with Eqs. (B22)–(B24), gives the boundary condition for ϕ on the
plate, that is,

ϕ(t̂, y = 0, ζ̂i) =− (2ζ̂1 +
√
π)v̌1 − (ζ̂2 − 2)Ť

+

[
−1

3

∫ ∞

0

r5B(r)e−r2dr +

(
ζ̂21 − 1

3
ζ̂2
)
B(ζ̂)

]
1

ρB

(
∂v1
∂x1

)
B

+ ζ̂1A(ζ̂)
1

ρB

(
∂T

∂x1

)
B

− 2
√
π

∫
ζ̂∗1<0

ζ̂∗1ϕ(t̂, y = 0, ζ̂∗i)E(ζ̂∗)dζ̂∗,

for ζ̂1 > 0. (B25)

Here, the terms of O(ϵ) have been neglected, and A(ζ̂, 1) and B(0)(ζ̂, 1) have been replaced by

A(ζ̂) and B(ζ̂) [cf. Eq. (A17)]. In addition, because of Eq. (B7), ϕ should vanish rapidly as
y → ∞, i.e.,

ϕ → 0 as y → ∞. (B26)

Equations (B25) and (B26) form the boundary conditions for Eq. (B19).

3. Jump boundary conditions

Before analyzing Eqs. (B19), (B25), and (B26), we integrate Eq. (B19) multiplied by E(ζ̂)

with respect to ζ̂i over its whole space. Then, we have

∂

∂y

∫
ζ̂1ϕE(ζ̂)dζ̂ = 0, (B27)
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since the integral of L(ϕ) vanishes. Because of Eq. (B26),∫
ζ̂1ϕE(ζ̂)dζ̂ = 0 (B28)

holds for any y. Therefore, we have∫
ζ̂1ϕ(t̂, y = 0, ζ̂i)E(ζ̂)dζ̂ = 0. (B29)

On the other hand, the boundary condition (10a) satisfies the impermeability condition,∫
[ζ1 − vw(t)]fBdζ =

∫
ζ̂1f

(0)
B [1 + ΨBϵ+ΦBϵ+O(ϵ2)]dζ̂ = 0. (B30)

Since f
(0)
B = ρBE(ζ̂)[1+O(ϵ)] and ΦB = ϕ(t̂, y = 0, ζ̂i) [Eq. (B24)], Eqs. (B29) and (B30) give

the relation ∫
ζ̂1f

(0)
B (1 + ΨBϵ)dζ̂ = O(ϵ2). (B31)

Using Eq. (B22), performing the integration, and noting that
∫
ζ̂21A(ζ̂, 1)E(ζ̂)dζ̂ = 0, we obtain

the following relation:

v̌1 = [v1B − vw(t)]/ϵ = O(ϵ). (B32)

Therefore, we can neglect v̌1 in Eq. (B25).
The mathematical structure of the solution of the half-space boundary-value problem,

Eqs. (B19), (B25), and (B26), is discussed in [25] on the basis of the theorem conjectured
in [47], proved in [48], and further analyzed in [49] (the reader is also referred to the more
recent overview [50]). In the present case, where v̌1 = 0 in Eq. (B25), the unique solution exists
when Ť is related to (1/ρB)(∂v1/∂x1)B and (1/ρB)(∂T/∂x1)B appropriately. This relation,
which we will obtain below, gives the boundary condition for the temperature.

Let us set

ϕ =
1

ρB

(
∂v1
∂x1

)
B

ϕv +
1

ρB

(
∂T

∂x1

)
B

ϕT , (B33a)

Ť =
1

ρB

(
∂v1
∂x1

)
B

αv +
1

ρB

(
∂T

∂x1

)
B

αT , (B33b)

and insert them in Eqs. (B19), (B25) (with v̌1 = 0), and (B26). Then, because of the linearity
of the problem, we obtain the equations and boundary conditions for ϕv and ϕT : For ϕv, the
equation and boundary conditions are

ζ̂1
∂ϕv(t̂, y, ζ̂)

∂y
= L[ϕv(t̂, y, ζ̂)], (B34a)

ϕv(t̂, 0, ζ̂) = −2
√
π

∫
ζ̂∗1<0

ζ̂∗1ϕv(t̂, 0, ζ̂∗)E(ζ̂∗)dζ̂∗ − αv

(
ζ̂2 − 2

)
− 1

3

∫ ∞

0

r5B(r)e−r2dr +

(
ζ̂21 − 1

3
ζ̂2
)
B(ζ̂), (ζ̂1 > 0), (B34b)

ϕv(t̂, y, ζ̂) → 0, (y → ∞), (B34c)

and for ϕT , they are

ζ̂1
∂ϕT (t̂, y, ζ̂)

∂y
= L[ϕT (t̂, y, ζ̂)], (B35a)

ϕT (t̂, 0, ζ̂) = −2
√
π

∫
ζ̂∗1<0

ζ̂∗1ϕT (t̂, 0, ζ̂∗)E(ζ̂∗)dζ̂∗ − αT

(
ζ̂2 − 2

)
+ ζ̂1A(ζ̂),

(ζ̂1 > 0), (B35b)

ϕT (t̂, y, ζ̂) → 0, (y → ∞). (B35c)
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The undetermined constants αv and αT are determined together with the solutions ϕv and ϕT ,
respectively.

• Problem for ϕT

The problem for ϕT , Eq. (B35), is exactly the same as the classical temperature jump
problem (see, e.g., [27, 51–54]). For hard-sphere molecules, the problem was solved nu-

merically in [54] (see also [46]). We note that (y, ζ̂i, ϕT , αT ) (here) = (x1, ζi, ΦK, β) (in
[54]) = (η, ζi, Φ1, b) (in [46]) and αT (here) = d1 (in [25]; see Sec. 3.1.5 in [25]). For
the BGK model, an accurate value of αT was obtained in [55, 56]: αT (here) = d1 (in
[55, 56]). In summary, we have from [25] the values listed in Eq. (28), i.e.,

αT = 2.4001 (hard-sphere molecules), αT = 1.30272 (BGK model), (B36)

for the diffuse reflection.

• Problem for ϕv

The problem for ϕv, Eq. (B34), has been studied rarely because it does not correspond to a
specific half-space problem of physical interest. It has appeared only in the generalized slip
flow theory (linear theory) with evaporation and condensation on the boundary [25, 56]
(BGK model) and that for time-dependent problems with solid boundary [34–36] (hard-

sphere molecules). For instance, (y, ζ̂1, ϕv, αv) (here) = (η, µζ, ϕ5, c
(0)
5 ) (in [35]), and αv

(here) = (4/3)d6 in [25, 56]. To summarize, we have, from [35] for hard-sphere molecules
and from [25] for the BGK model, the values of αv listed in Eq. (28), i.e.,

αv = 0.45957 (hard-sphere molecules), αv = 0.44045 (BGK model), (B37)

for the diffuse reflection.

In summary, Eqs. (B21), (B32), and (B33b) give v1B and TB in the following form:

v1B − vw(t) = 0, TB − 1 =
1

ρB

(
∂v1
∂x1

)
B

αvϵ+
1

ρB

(
∂T

∂x1

)
B

αT ϵ, (B38)

where the term of O(ϵ2) in Eq. (B21) has been neglected. With the values of αv and αT

mentioned above, these relations give the boundary conditions for the Navier–Stokes equations
on the oscillating plate, i.e., at x1 = xw(t) [see Eq. (27a)]. The boundary conditions on the
plate at rest, i.e., at x1 = d, is obtained by replacing (x1, v1, vw) with (d − x1, −v1, 0) in
Eq. (B38) [see Eq. (27b)] and noting that the subscript B indicates the values at x1 = d.

As mentioned in the main text, there are some problems in the existing slip boundary con-
ditions for the compressible Navier–Stokes equations, and incorrect formulas are often used.
Therefore, it is worth deriving the correct formulas in the general setting, i.e., for boundaries
with arbitrary shape, velocities, and temperatures. This will be the subject of our forthcoming
paper [57].

4. Macroscopic quantities inside the Knudsen layer

Let h stand for any of the macroscopic quantities ρ, vi, T , p, pij , and qi in this subsection.
The general relation between the velocity distribution function f and h is given by Eqs. (3a)
and (3b). For convenience in the following discussions, we use subscript “CE” to indicate h

associated with the Chapman–Enskog solution f
(1)
CE . To be more specific, hCE (or ρCE, vCEi,

TCE, pCE, pCEij , and qCEi) in this subsection = h (or ρ, vi, T , p, pij , and qi) appeared in
Secs. IV–VII and in Appendices B 1–B3. The Chapman–Enskog solution is subject to the
correction inside the Knudsen layer [cf. Eq. (26)] to provide the correct solution there. We
rewrite Eq. (26) in the following form using the subscript “tot” to indicate the correct solution
inside the Knudsen layer:

ftot = f
(1)
CE + f (0)Φ+O(ϵ2) = f (0)(1 + Ψϵ+Φϵ) +O(ϵ2), (B39)
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where it is noted that the macroscopic quantities contained in f (0) are hCE. Now we denote
the correct macroscopic quantities inside the Knudsen layer by htot and express it as

htot = hCE + h
(1)
K ϵ+O(ϵ2). (B40)

In other words, this provides the definition of h
(1)
K .

We derive h
(1)
K in the Knudsen layer at the oscillating plate [x1 = xw(t)]. The corresponding

result in the Knudsen-layer at the resting plate (x1 = d) can be obtained immediately. We
substitute Eqs. (B39) and (B40) into the general relations, Eqs. (3a) and (3b) (with f = ftot,

and h = htot) and take into account that f
(1)
CE and hCE also satisfy Eqs. (3a) and (3b). Then,

we simplify the expressions by using Eq. (B12) for hCE contained in the factors multiplied by

Φ and neglect the terms of O(ϵ2). After changing the integration variables from ζi to ζ̂i (thus
changing from Φ to ϕ) [cf. Eqs. (B5), (B6), and (B18)], we obtain the following expressions of

h
(1)
K :

ρ
(1)
K = (ρCE)B

∫
ϕE(ζ̂)dζ̂, v

(1)
Ki =

∫
ζ̂iϕE(ζ̂)dζ̂, (B41a)

T
(1)
K =

2

3

∫ (
ζ̂2j − 3

2

)
ϕE(ζ̂)dζ̂, p

(1)
K = (ρCE)BT

(1)
K + ρ

(1)
K , (B41b)

p
(1)
Kij = 2(ρCE)B

∫
ζ̂iζ̂jϕE(ζ̂)dζ̂, q

(1)
Ki = (ρCE)B

∫
ζ̂i

(
ζ̂2j − 5

2

)
ϕE(ζ̂)dζ̂. (B41c)

From the symmetry of the problem [cf. Eq. (4)], v
(1)
K2 = v

(1)
K3 = 0, p

(1)
K12 = p

(1)
K21 = p

(1)
K23 = p

(1)
K32 =

p
(1)
K31 = p

(1)
K13 = 0, and q

(1)
K2 = q

(1)
K3 = 0. Furthermore, Eq. (B28) shows that v

(1)
K1 = 0. Integrating

Eq. (B19) multiplied by ζ̂1E(ζ̂) and that multiplied by (ζ̂2j −5/2)E(ζ̂) with respect to ζ̂i over its

whole space and repeating the argument that led to Eq. (B28), we observe that p
(1)
K11 = q

(1)
K1 = 0.

Now we remove the subscript “CE” and summarize the correct (nontrivial) macroscopic
quantities htot inside the Knudsen layer. That is, if we neglect the terms of O(ϵ2), we have

ρtot = ρ+ ϵρ
(1)
K , vtot1 = v1, Ttot = T + ϵT

(1)
K , ptot = p+ ϵp

(1)
K , (B42a)

ptot11 = p− 4

3
ϵΓ1(T )

∂v1
∂x1

, ptot22 = p+ ϵp
(1)
K22, ptot33 = p+ ϵp

(1)
K33, (B42b)

qtot1 = −5

4
ϵΓ2(T )

∂T

∂x1
, (B42c)

where

ρ
(1)
K = ρB

∫
ϕE(ζ̂)dζ̂, T

(1)
K =

2

3

∫ (
ζ̂2j − 3

2

)
ϕE(ζ̂)dζ̂, (B43a)

p
(1)
K = ρBT

(1)
K + ρ

(1)
K , p

(1)
Kij = 2ρB

∫
ζ̂iζ̂jϕE(ζ̂)dζ̂. (B43b)

If we insert Eq. (B33a) in Eq. (B43a), we have

ρ
(1)
K =

(
∂v1
∂x1

)
B

Ωv(y) +

(
∂T

∂x1

)
B

ΩT (y), (B44a)

T
(1)
K =

1

ρB

(
∂v1
∂x1

)
B

Θv(y) +
1

ρB

(
∂T

∂x1

)
B

ΘT (y), (B44b)

where

Ωv(y) =

∫
ϕvE(ζ̂)dζ̂, ΩT (y) =

∫
ϕTE(ζ̂)dζ̂, (B45a)

Θv(y) =
2

3

∫ (
ζ̂2j − 3

2

)
ϕvE(ζ̂)dζ̂, ΘT (y) =

2

3

∫ (
ζ̂2j − 3

2

)
ϕTE(ζ̂)dζ̂. (B45b)
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For hard-sphere molecules, ΩT (y) and ΘT (y) were obtained in [54] and [46]. More pre-
cisely, [y, ΩT (y), ΘT (y)] (here) = [x1, Ω(x1), Θ(x1)] (in [54]) = [η, Ω(η), Θ(η)] (in [46]) =
[η, Ω1(η), Θ1(η)] (in [25]). These functions are tabulated in the respective references; for ex-
ample, see Table 3.2 on page 86 of [25]. On the other hand, Ωv(y) and Θv(y) were obtained

in [35]; [y, Ωv(y), Θv(y)] (here) = [η, Ω
(0)
5 (η), Θ

(0)
5 (η)] (in [35]), and Ω

(0)
5 (η) and Θ

(0)
5 (η) are

tabulated in Table 5.2 of [35].
For the BGK model, ΩT (y) and ΘT (y) were obtained, e.g., in [56]; [y, ΩT (y), ΘT (y)] (here)

= [η, Ω1(η), Θ1(η)] (in [56]) = [η, Ω1(η), Θ1(η)] (in [25]), and these functions are tabulated in
the respective references; for example, see Table 3.3 on page 87 of [25]. As for Ωv(y) and Θv(y),
they were also obtained in [56]; [y, Ωv(y), Θv(y)] (here) = [η, (4/3)Ω6(η), (4/3)Θ6(η)] (in [56])
= [η, (4/3)Ω6(η), (4/3)Θ6(η)] (in [25]), and Ω6(η) and Θ6(η) are tabulated, for instance, in
Table 3.3 on page 87 of [25].

Once the data of Ωv(y), Θv(y), ΩT (y), and ΘT (y) are obtained from the references quoted
above, the correct macroscopic quantities ρtot, Ttot, and ptot are obtained from Eqs. (B42a),

(B43b), and (B44) (we omit the result of p
(1)
K22 and p

(1)
K33). We emphasize that vtot1, ptot11, and

qtot1 are free from the Knudsen-layer corrections.
The form of Eq. (B42) is the same in the Knudsen layer at the resting plate (x1 = d). The

corresponding corrections ρ
(1)
K and T

(1)
K are obtained by replacing (x1, v1) with (d − x1, −v1),

defining y by y = ρB(d− x1)/ϵ, and noting that the subscript B indicates the values at x1 = d
in Eq. (B44).

Appendix C: Data and accuracy test for numerical computation

First we summarize the data for the numerical computation. We have used uniform cells in
x1. The number of the cells Nx per the length d0 = 2π

√
5/6 = 5.7357 · · · is common to all the

results shown in the figures and is 2000 (note that N = Nx for d = d0, N = 3Nx for d = 3d0,
etc.). Therefore, the size of a cell ∆x when the oscillating plate is located at x1 = 0 is ∆x =
d0/2000 = 0.0028 · · · . The time step is also uniform, and the number of steps Nt per a period is
from 3.2×105 to 1.28×106. More precisely, the time step is ∆t = 2π/3.2×105 = 1.9 · · ·×10−5

for the result shown in Figs. 2, 3, 5, and 6, ∆t = 2π/6.4× 105 = 9.8 · · · × 10−6 for Fig. 4, and
∆t = 2π/1.28×106 = 4.9 · · ·×10−6 for Fig. 7. The ∆x and ∆t for the results shown in Figs. 8,
9, and 11 are more or less based on the data given above.

We next give some examples of the accuracy check. Hereafter, we consider the case of ϵ = 0.1,
aw = 0.1, and d = d0. In the following, we use the four grid systems:

• (Grid 1) ∆x = d0/500 = 1.1 · · · × 10−2, ∆t = 2π/8× 104 = 7.8 · · · × 10−5

• (Grid 2) ∆x = d0/1000 = 5.7 · · · × 10−3, ∆t = 2π/1.6× 105 = 3.9 · · · × 10−5

• (Grid 3) ∆x = d0/2000 = 2.8 · · · × 10−3, ∆t = 2π/3.2× 105 = 1.9 · · · × 10−5

• (Grid 4) ∆x = d0/4000 = 1.4 · · · × 10−3, ∆t = 2π/6.4× 105 = 9.8 · · · × 10−6

Let h stand for ρ, v1, T , and p, and let hGi denote the result of h based on the grid (Grid i)
(i = 1, 2, 3, 4). At t/2π = 200, we have |hG1 − hG4| < 1.2 × 10−4, |hG2 − hG4| < 3.3 × 10−5,
and |hG3 − hG4| < 8.6× 10−6. This shows that the grid systems used in the computation have
given the results of sufficient accuracy. Similar checks have been carried out by changing ∆x
for a fixed ∆t (∆t = 9.8 · · · × 10−6) and by changing ∆t for a fixed ∆x (∆x = 1.1 · · · × 10−2).
But the results are omitted here.

The total mass of the gas between the two plates per unit are of the plates is expressed as

m(t) =

∫ d

xw(t)

ρ(t, x1)dx1, (C1)

which is constant theoretically. However, because of numerical errors, it changes slightly with
time. If we plot |m(t) −m(0)|/m(0) versus t, it increases almost linearly in t, oscillating with
an amplitude that does not increase with t, after some tens of the periods. We evaluated the
average amplitude rm [i.e., the average of the maximum minus the minimum in each period
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(n < t/2π ≤ n + 1; n = 100, 101, ..., 199) over 100 ≤ t/2π ≤ 200] and the average rate of
increase sm of the maximum per one period (i.e., the maximum in 199 < t/2π ≤ 200 minus
the maximum in 100 < t/2π ≤ 101 divided by 100). The result is as follows: rm ≈ 3.2× 10−6,
sm ≈ 3.7× 10−8 for (Grid 1); rm ≈ 8.3× 10−7, sm ≈ 1.8× 10−8 for (Grid 2); rm ≈ 2.7× 10−7,
sm ≈ 9.0× 10−9 for (Grid 3); rm ≈ 1.6× 10−7, sm ≈ 4.5× 10−9 for (Grid 4). The results show
that better mass conservation is attained with finer grid systems.

Finally, we consider the momentum and energy transfer. In the time-periodic state, PL = PR

and EL = ER hold (cf. Sec. VIIB). We check how accurately these relations are satisfied

numerically. Let us put Perr = (PL − PR)/aw and Eerr = (EL − ER)/aw. Then, Perr ≈
3.2 × 10−6, Eerr ≈ 2.5 × 10−4 (Grid 1); Perr ≈ −3.5 × 10−6, Eerr ≈ 2.5 × 10−4 (Grid 2);
Perr ≈ −6.8× 10−6, Eerr ≈ 2.5× 10−4 (Grid 3); Perr ≈ −8.2× 10−6, Eerr ≈ 2.5× 10−4 (Grid
4). This shows that the grid refinement (Grid 1) → (Grid 4) does not improve the conservation
properties of momentum and energy. On the other hand, we obtained a better result: Perr ≈
4.0 × 10−7, Eerr ≈ 3.2 × 10−5 for the grid system with ∆x = d0/500 = 1.1 · · · × 10−2 and
∆t = 2π/6.4×105 = 9.8 · · ·×10−6. This and other tests suggest that to have better momentum
and energy conservation, smaller time steps are required.
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