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Abstract 

It has been observed previously that the physical behaviors of Schmidt number (Sc) and 

Prandtl number (Pr) of an energy-conserving Dissipative Particle Dynamics (eDPD) fluid 

can be reproduced by a temperature-dependent weight function appeared in the 

dissipative force term. In this paper, a simple method used to devise the temperature-

dependent weight function is proposed and the systematic approach in selecting the 

eDPD parameter such as the cut-off radius (rc) is outlined. The method is then used to 

study a variety of phase-change problems involving solidification. The concept of 

“mushy” eDPD particle is introduced in order to better capture the temperature profile in 

the vicinity of the solid-liquid interface, particularly for the case involving high thermal 

conductivity ratio. Meanwhile, a new way to implement the constant temperature 

boundary condition at the wall is proposed. The numerical solutions of the 1D and 2D 

solidification problems are then compared with the analytical solutions and it is found 

that the agreements are promising. Finally, the fluid flow and freezing behaviors of water 

in a channel is studied.  
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1.0 Introduction 

Dissipative Particle Dynamics (DPD) is a particle-based method originally proposed by 

Hoogerbrugge and Koelman (1992). In general, the particle considered in DPD represents 

a cluster of atoms/molecules (coarse-grained), instead of individual atom/molecule 

considered in Molecular Dynamics (MD). Therefore, DPD can be used to compute 

problems of larger spatial and time scales than those considered in MD such as fiber 
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suspension (Duong-Hong et al. 2010), microswimmer (Fedosov et al. 2015; Hinz et al. 

2015), blood flow (Kumar 2009), polymer dynamics (Guo et al. 2011; Tang et al. 2016), 

DNA suspensions (Fan et al. 2003, 2006), microfluidic systems (Steiner et al. 2009), etc. 

A more thorough review on the applications of DPD can be found in the works reported 

by Moeendarbary et al. (2009), Mills et al. (2013) and Liu et al. (2014). 

 In order to extend the numerical framework of DPD to handle non-isothermal 

flow, Espanol (1997) has developed the transport equation of internal energy for each 

DPD particle. Espanol’s method is commonly known as the energy-conserving 

Dissipative Particle Dynamics (eDPD) in open literature. More recently, Chaudhri and 

Lukes (2009) have extended the formulations of eDPD method to compute 

multicomponent flow. To date, eDPD has been used in many fluid flow applications 

involving heat transfer such as conjugate heat transfer problem (Zhang et al. 2016), 

conduction problem in nanocomposite (Qiao and He 2007), thermophoretic 

microswimmer problem (Fedosov et al. 2015), etc. By combining the enthalpy method 

with eDPD, problems involving phase-change (i.e. melting) have been addressed by 

Willemsen et al. (2000, 2002).  

 It is well-known that thermophysical property of a real fluid changes with respect 

to temperature. In fact, for common liquid such as water, its dynamic viscosity decreases 

as temperature increases. Li et al. (2014) have recently devised a temperature-dependent 

formulation for the exponent s (denoted as Li’s formulation in this paper) appeared in the 

weight function of dissipative force in order to capture this physical fluid property by 

using eDPD. Basically, they have enlarged the cut-off radius (rc) from its conventional 

value (=1.0) to rc =1.58. Coupled with their proposed temperature-dependent exponent: 

s(T) = C1 + C2(T
2-1) where T is the dimensionless temperature, they have successfully 

reproduced the Schmidt number and the Prandtl number for liquid water at various 

temperatures. In their works, they have recommended the values of C1 and C2 as 0.41 and 

1.9, respectively.  However, the details on how to choose the values of rc, C1 and C2 are 

not given. More recently, Abu-Nada (2015) has argued on the difficulty in extending the 

Li’s formulation to other fluids. In order to resolve this issue, Abu-Nada (2015) has 

incorporated the temperature-dependent viscosity ratio in the wD weight function of Fan 

et al. (2006). Although the extension of this method to handle other fluids is 

straightforward, it remains as open question whether this method is able to reproduce the 

Schmidt number of a real fluid at different temperatures. Yamada et al. (2016) have 

recently highlighted the importance of modelling the freezing behavior in microfluidic 

devices such as phase change valves and Proton Exchange Membrane Fuel Cells 

(PEMFC) in order to control the ice formation. Following this, Johansson et al. (2016) 

have adopted the Li’s formulation in modelling the freezing behavior in a flow channel. 

They have used a larger rc in their 2D eDPD simulation (rc =1.81); however, the rationale 

behind this selection is unclear.  

In the current paper, we intend to propose a new formulation of the exponent s. 

The selection of the proper cut-off radius will be outlined based on the kinetic theory, and 

the procedures in obtaining the s values at different temperatures will be described. Due 

to the fact that the physical property for water below 0oC (i.e. supercooled water) is 

available, we have further extended this method to cover a wider temperature range, i.e. 

253.15 K < TR < 373.15K, where TR is the temperature with physical unit. The new 

formulation is then used to simulate a variety of flow problems involving solidification. 



At this point, we will introduce the concept of “mushy” particle to model the eDPD 

particles in the transition zone. In order to properly represent the Dirichlet temperature 

boundary condition imposed at the wall, we have modified the original method of 

Willemsen et al. (2000) by simply fixing the ghost particles in the wall and their 

temperatures are determined based on the numerical interpolation in the fluid region. 

Therefore, it is unnecessary to update the positions of ghost particles in our current 

implementation. We have further validated the eDPD method in 2D solidification 

problem (where analytical solution is available) which has been overlooked by the eDPD 

researchers so far. Finally, the fluid flow and freezing behaviors in a flow channel will be 

studied.  

 

 

2.0 Mathematical Model 

The governing equations of energy-conserving Dissipative Particle Dynamics (eDPD) 

model have been reported in many literatures. Here, these equations are rewritten for 

completeness. The equation of motion of an eDPD particle i can be expressed as: 
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where C

ijF


is the conservative force vector, consisting of soft repulsive force due to the 

interaction potential between particles and D

ijF


is the dissipative force vector which 

would dissipate the thermal kinetic energy of the system and hence reduce the velocity 

difference between the particles. On the other hand, the random force vector, R

ijF


generates a stochastic force on eDPD particle. The dissipative and random forces are 

acting as a heat sink and a heat source, respectively. Their combination must satisfy the 

fluctuation-dissipation theorem in order to satisfy the energy balance within the fluid 

system. E

ijF


is any external force acting on the particles, such as spring force, etc.  In the 

current work, all particles are having the same mass m (=1.0), and the velocity vector iv


is 

found by integrating Equations (1, 2) with respect to time by using the velocity-Verlet 

scheme proposed by Groot and Warren (1997). The summation operator appeared in 

Equation (1) is performed on all neighbouring eDPD particles within the cut-off radius rc. 

Mathematically, these force components are expressed as: 
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Here, ijr is the distance between particles i and j. ije


is the unit vector pointing from 

particle j to i. ijv


is the velocity difference defined as: jiij vvv


 . ija is the repulsive force 

parameter expressed as /75
jiBij Tka  (for water) where kB is the Boltzmann constant. 

jiT  is the effective temperature and  is the number density. Li et al. (2014) have defined 

2/)( jiji TTT  in their work. However, we follow the approach of Fedosov et al. (2015) 

by using a constant value of Tij, i.e. 2/)( CHji TTT   where TH and TC are the hot and 

cold temperatures in the system. ij and ij are the dissipative and random force 

parameters, respectively, satisfying the fluctuation-dissipation theorem: 

)/(42

jijiBijij TTTTk   and 
2

RD ww  . The weight functions such as cC rrw /1 and 

 s

cD rrw /1 (where s = 2) are commonly adopted. ij is the symmetric random 

number with zero mean and unit variance, i.e. jiij   . Qiao and He (2007) have 

previously reported that result simulated based on uniform random number is similar to 

that of Gaussian random number. Therefore, due to the fact that the generation of uniform 

random number is computationally cheaper, it is implemented in the current work.  

 In order to determine the temperature of an eDPD particle, we have solved the 

energy equation as well: 
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where ei is the internal energy of particle i, i.e. ivi TCe  where Cv is the specific heat. The 

terms such as collisional heat flux C

ijq , viscous heat flux V

ijq and random heat flux R

ijq are 

written as: 
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External heat source is included in Qext. The term kij indicates the strength of the 

collisional heat flux, which is related to the mesoscopic heat friction κij as 

Bjiijvij kTTCk 4/)( 22   . As reported by Zhang et al. (2016), the mesoscopic heat 

friction κij is treated as heat conductivity in mesoscopic scale; therefore, the harmonic 

mean procedure is used to express the equivalent heat friction between 2 particles: 



)/(2 jijiij   . Meanwhile, the strength of the random heat flux 
ij is related to kij 

as: ijBij kk2 . The weight functions of collisional and random heat fluxes: 

2)/1( cCT rrw  and )/1( cRT rrw   are used. e

ij is the anti-symmetric uniform random 

number with zero mean and unit variance, i.e.  e

ji

e

ij   . 

 It is important to note that the variables defined above are written in their 

dimensionless forms. In the current work, the reference temperature 
RT* is 300K. Here, 

the superscript R signifies the quantity with physical units and the subscript * indicates 

the reference quantity. By normalizing the specific heat of a reference mass ( RR

v mC *
) with 

the Boltzmann constant (
R

Bk =1.381x10-23J/K), one could obtain the dimensionless 

specific heat Cv defined earlier, i.e. R

B

RR

vv kmCC /* , where 
Rm* is the mass of an eDPD 

particle (reference mass) which can be written as    /
3

**

RRR lm  . Here, a physical space 

of volume  3*

Rl , where 
Rl* is the reference length scale, contains  number of eDPD 

particles. Therefore, the total specific heat within this physical space, i.e. R

BvkC  is related 

to the real specific heat as:   R

v

RRR

Bv ClkC
3

*  . By treating the density of water R as 

1000kg/m3 and the specific heat of water R

vC as 4180 J/kgK and using the standard eDPD 

parameters such as  = 4 and vC =100,000, one can compute the length scale as
Rl* ~ 

11nm. In general, the eDPD model is more coarse-grained when vC  increases. 

 

 

3.0 Thermophysical properties of water 

The exponent s appeared in wD is normally prescribed as 2.0 in DPD. This is permissible, 

if the momentum diffusion is of the same order as the particle diffusion (or self-diffusion) 

in real fluid, i.e. Schmidt number (Sc) is ~1.0 (Groot and Warren 1997). However, for 

real fluid such as water, Sc ~ 350 at 
RT* = 300K, indicating that the simulated Sc would be 

several orders of magnitude lower than the actual Sc by using the standard DPD 

parameters. This condition occurs due to several reasons. Apart from the soft interaction 

between the DPD particles (Mai-Duy et al. 2013), shearing dissipation may disappear 

even though two DPD particles are close to each other (Fan et al. 2006). In general, fluid 

is behaving like gas if Sc is low or liquid if Sc is large (Li and Drazer 2008). Ripoll et al. 

(2005) have observed that the correct hydrodynamic behavior of suspended particles can 

be recovered only at large Sc. Symeonidis et al. (2006) have compared the DPD results 

with the experimental data and concluded that the under-predicted value of Sc would 

degrade the accuracy of the DPD simulation.  

From the linearized Fokker-Planck equation (see Dhanabalan (2005)), the 

hydrodynamic variable such as kinematic viscosity υ and self-diffusivity D can be written 

as: 
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rDo / and    

rDBrDw wTkwrmt /22  . Depending on the flow 

dimensionality d, the bracketed term, say  r , is indeed an integral operator: 
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r drr
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24.  for d=3. The upper bound of the integrand 

is the cut-off radius, rc. 

 By employing  s

cD rrw /1 and integrating terms such as  
rDw  and  

rDwr 2 , 

the kinematic viscosity (υ) and self-diffusivity (D) can now be determined as a function 

of s. Here, we focus on two-dimensional problem (d = 2): 
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Thus, the Schmidt number can be written as: 

 

 
)4)(3()2()1(4

3

2

1
22

6222




ssssTk

r

D
Sc

B

c
 (14) 

 

From Equation (14), it is now straightforward to devise methods that are able to increase 

the Schmidt number of the DPD fluid. One may decrease the temperature T as practiced 

in Li and Drazer (2008). Alternatively, Fan et al. (2006) have used a smaller value of s, 

i.e. s=0.5. Methods such as increasing rc or ρ can be adopted as well at the expense of 

more computational cost. Finally, the idea of increasing the dissipative parameter γ can 

be pursued; however, the random parameter σ must be increased (hence reduced Δt) to 

satisfy the fluctuation-dissipation theorem.  

 For non-isothermal flow, the method of reducing s seems to be the most practical 

approach, as the associated increase of computational cost is not significant at all. For 

example, Li et al. (2014) have devised a special temperature-dependent function of s, i.e. 

s(T) = 0.41 + 1.9(T2-1) to reproduce the Schmidt number of water for temperature 

ranging from 273K < TR < 373K. Meanwhile, they have increased the cut-off radius rc to 

1.58. The rationales behind the development of their function s(T) and the choice of rc 

are, however, unclear. This would unfortunately complicate the process of devising the 

proper s(T) function for other working fluids. More recently, Abu-Nada (2015) has 

proposed a new weight function for dissipative force, by simply multiplying the 

temperature-dependent viscosity ratio of a fluid with the weight function suggested by 

Fan et al. (2006), i.e.   2/1
/1

)(
c

C

D rr
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 , where μC is the reference dynamic 



viscosity. However, the ability of this new model to reproduce the Schmidt number of a 

real fluid remains unknown. By relying on the same exponent s(T) developed by Li et al. 

(2014), Johansson et al. (2016) have computed the 2D mesoscopic solidification problem 

using eDPD. They have enlarged the cut-off radius rc to 1.81 while keeping the standard 

DPD parameters unchanged, i.e. γ = 4.5 and ρ = 4. The simulated Schmidt numbers of Li 

et al. (2014) and Johansson et al. (2016) at different temperatures are shown in Figure 1. 

As seen, the computed Schmidt numbers based on the s(T) function of Li et al. (2014) 

vary considerably with those measured experimentally, especially at low temperature 

regime. On the other hand, the over-prediction of the Schmidt numbers simulated by 

Johansson et al. (2006) is quite discernible in medium temperature range: 291K < TR< 

312K (or 0.97 < T < 1.04).  

 

 
Figure 1: Schmidt number as a function of temperature predicted by Li et al. (2014) and 

Johansson et al. (2016). 

 

 Now, the main question is lying on how to choose the proper DPD parameters in 

order to reproduce the Schmidt number of water. Firstly, we realize that the cut-off radius 

rc is a constant parameter (fixed during the eDPD computation). Therefore, Equation (14) 

can be rearranged in a way leading to: 
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Now, we are able to generate plots of rc against s for different temperatures as shown in 

Figure 2. Here, we replace the term Sc by the target value (i.e. experimental values of 

Schmidt number), and utilize the standard DPD parameters such as =4.5 and =4 to 
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generate the plots. It is important to note that the temperature range considered is 

subjected to the availability of the experimental value of Sc. 

 Due to the fact that the thermophysical properties of supercooled liquid water are 

experimentally available (see Holten et al. 2012, Hallett 1963 and Gillen et al. 1972), let 

us consider a working temperature range: 253.15 K < TR < 373.15K (or 0.84 < T < 1.24), 

which is larger than that considered by Li et al. (2014). As observed from Figure 2(a), the 

exponent s is increasing with respect to temperature upon prescribing a constant rc value, 

which is agreeable to the original proposal of Li et al. (2014). Obviously, a low value of 

rc is preferable in order to shorten the simulation time (the cost of force calculation is 

proportional to rc
3, see Fan et al. 2006). As shown in Figure 2(a), in order to ensure s>0 

(i.e. wD is decaying within rc) for the entire temperature range, the condition of rc > rc,crit 

must hold. From Figure 2(a), it seems that rc,crit ~ 2.365. Alternatively, the term rc,crit can 

be calculated from Equation (15) by setting s = 0 and Sc =10356 (i.e. the experimental 

value of Schmidt number at the lowest temperature within the range considered: T = 

0.84).  

 

 

 

 
(a) 

 



 
(b) 

 

Figure 2: The relationship between rc and s at different temperatures. Dash line indicates 

rc  = rc,crit. (a) =4.5 and =4 are used. rc,crit ~ 2.365. (b) =8.0 and =4 are used. rc,crit ~ 

1.952. rc must be chosen in such a way that rc > rc,crit. 

 

 Now, if one relies on the standard parameters, e.g. =4.5 and =4, one may 

choose rc = 2.37 (i.e. a value which is slightly larger than rc,crit ~ 2.365) for the eDPD 

computation. However, this implies that particle information in at least 3 (the next integer 

of rc,crit) neighbouring cells of the local cell containing particle i must be processed during 

the interactive force/heat computation. Meanwhile, we have found that by increasing the 

dissipative parameter  to 8.0 and retaining =4, rc,crit can be reduced to 1.952 according 

to Figure 2(b) or Equation (15). Correspondingly, due to the increase of  (hence increase 

of random parameter σ), the time step size is reduced from the recommended value Δt = 

0.01 (Johansson et al. 2016) to Δt = 0.007 to ensure numerical stability. Therefore, the 

eDPD parameters, i.e. rc = 1.96,   = 8.0, =4 and Δt = 0.007 will be used in the test cases 

outlined in the current work unless stated otherwise.  

 Based on the selected eDPD parameters, it is now possible to determine the 

temperature dependent function of s graphically for different values of temperature T (say 



from Figure 2(b)) or based on Equation (15). We have opted to solve Equation (15) 

numerically for s. Given the experimental value of Schmidt number Sc at a particular 

temperature T, the exponent s is solved iteratively by using the eDPD parameters 

suggested above. The numerical values of s(T) are tabulated in Table 1. A quadratic 

function s*(T) = -6.3039T2 + 19.594T- 12.032 can be used to fit the s(T) data as well with 

the coefficient of determination R2 = 0.9997. 

 

Table 1: Computed s values at different temperatures from Equation (15) based on rc = 

1.96,   = 8.0 and =4.  

 

TR(oC) TR (K) T Scexp s s* 

-20 253.15 0.8438 10355.66 0.0068 0.0133 

-19 254.15 0.8472 9287.15 0.0366 0.0431 

-18 255.15 0.8505 8406.42 0.0643 0.0728 

-17 256.15 0.8538 7590.42 0.0933 0.1023 

-16 257.15 0.8572 6867.35 0.1223 0.1316 

-15 258.15 0.8605 6221.72 0.1514 0.1608 

-14 259.15 0.8638 5620.84 0.1820 0.1899 

-13 260.15 0.8672 5117.06 0.2107 0.2189 

-12 261.15 0.8705 4667.65 0.2393 0.2477 

-11 262.15 0.8738 4267.43 0.2677 0.2763 

-10 263.15 0.8772 3902.49 0.2965 0.3048 

-9 264.15 0.8805 3553.05 0.3273 0.3332 

-8 265.15 0.8838 3224.68 0.3597 0.3615 

-7 266.15 0.8872 2927.04 0.3928 0.3896 

-6 267.15 0.8905 2662.79 0.4256 0.4175 

-5 268.15 0.8938 2434.85 0.4571 0.4453 

-4 269.15 0.8972 2235.97 0.4875 0.4730 

-3 270.15 0.9005 2067.09 0.5159 0.5006 

-2 271.15 0.9038 1893.11 0.5483 0.5280 

-1 272.15 0.9072 1755.51 0.5763 0.5552 

0 273.15 0.9105 1619.74 0.6067 0.5823 

5 278.15 0.9272 1167.94 0.7337 0.7158 

10 283.15 0.9438 854.60 0.8619 0.8458 

15 288.15 0.9605 644.16 0.9834 0.9723 

20 293.15 0.9772 497.08 1.0997 1.0953 

25 298.15 0.9938 388.20 1.2153 1.2148 

30 303.15 1.0105 309.44 1.3251 1.3308 

40 313.15 1.0438 203.13 1.5395 1.5522 

50 323.15 1.0772 139.81 1.7414 1.7597 

60 333.15 1.1105 99.78 1.9335 1.9531 

70 343.15 1.1438 73.52 2.1158 2.1325 



80 353.15 1.1772 55.53 2.2906 2.2980 

90 363.15 1.2105 43.11 2.4541 2.4494 

100 373.15 1.2438 33.94 2.6146 2.5868 

 

Note: s* is obtained from the fitting quadratic function: s*(T) = -6.3039T2 + 19.594T- 

12.032. R2 = 0.9997. 

 

 In what follows, the Schmidt and Prandtl numbers of the eDPD fluid will be 

measured and compared with the experimental data.  

 

3.1 Numerical measurement of self-diffusivity 

Following Kumar (2009), the self-diffusivity of eDPD fluid can be measured by using the 

mean square displacement (χ): 
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The self-diffusivity D is related to χ via: 
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Here, d is set to 2.0 for 2D problem and N is the total number of eDPD particles. 

 The computational domain used to measure D is a periodic box of size 30x30. 

Given an initial temperature T, the eDPD computation is executed for 140000 time steps 

to ensure thermal equilibrium. Then, the mean square displacement χ is measured for 

another 140000 time steps. Figure 3 compares the self-diffusivities at different 

temperatures. Here, the mean square displacement (χ) is scaled with 2d and the slope is 

indeed the self-diffusivity of the fluid. As expected, the self-diffusivity increases with 

respect to temperature. 

 



 
Figure 3: The mean squared displacement (scaled by 4) predicted at different 

temperatures. Self-diffusivity (slope) increases with respect to temperature. 

 

3.2 Numerical measurement of kinematic viscosity and thermal diffusivity 

In eDPD, the kinematic viscosity of the simulated fluid is an output parameter based on 

the specified eDPD parameters. Here, the Periodic Poiseuille Flow (PPF) method of 

Backer et al. (2005) has been used to determine the kinematic viscosity of the eDPD 

fluid. Figure 4 shows the schematic diagram of the PPF problem. The lengths of the 

periodic box in x- and y-directions (i.e. Lx and Ly) are set to 20 and 30, respectively. 

Depending on the flow region, the external force vector EF


is prescribed as < Fext, 0.0>, 

where Fext = 0.20 (see Figure 4). 

 Firstly, the eDPD particles of initial temperature T are allowed to equilibrate for 

100000 time steps (till t=7000). Then, each cell is divided into 40 bins in the y-direction 

and the time-averaging process is performed for another 120000 time steps. The time-

averaged x-velocities (u) for different temperatures are shown in Figure 5. Based on the 

obtained maximum u (i.e. umax) from the fitted parabolas, the kinematic viscosity υ at a 

particular temperature T can be computed as: 
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2u
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where Lc is the characteristic length: Lc = Ly /4 = 7.5 for the current PPF problem. In 

general, umax declines in a more viscous medium. As observed from Figure 5, umax drops 

(hence increasing viscosity) as T decreases, which is consistent with the physics of simple 

fluid such as water. 
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Figure 4: Schematic diagram of Periodic Poiseuille Flow (PPF) and Periodic Heat 

Conduction (PHC) problems. For PPF, Fext = 0.2 and Qext = 0. For PHC, Fext = 0 and Qext 

= 100. The dashed line is an imaginary line that divides the domain into two equal halves. 

Total lengths in x-direction (Lx) and y-direction (Ly) are 20 and 30, respectively. Periodic 

boundary conditions are applied at all boundaries.  

 
Figure 5: The velocity profiles of the Periodic Poiseuille Flow (PPF) problems for three 

temperatures (T=0.84, T=1.01 and T=1.24). The velocity profile is flattening as 

temperature decreases. 

 

Recently, Li et al. (2014) have related the fluid property, i.e. Prandtl number (Pr) 

which is available experimentally to the mesoscopic heat friction κ. Based on the kinetic 

theory, α can be determined analytically as:  
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By using the definition of Prandtl number (Pr = υ/α), the mesoscopic heat friction κ can 

be expressed as: 
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Here, Pr is the fluid property (dimensionless number) which is dependent on the 

temperature. Following the recommendations of Li et al. (2014), we have evaluated υ in 

the mesoscopic heat friction term analytically from Equation (12). The Prandtl number 

(Pr), however, is obtained directly from the experimental data.  

Equation (20) serves as a method to estimate thermal diffusivity α from κ (i.e. 

practiced by Zhang et al. 2016) or vice-versa. Analogous to kinematic viscosity, the 

thermal diffusivity is an output property based on the given eDPD parameters. In order to 

measure the thermal diffusivity (α) of eDPD fluids, various methods have been proposed 

in the literature. For example, Willemsen et al. (2000) have mapped the eDPD solutions 

to the theoretical solutions of an unsteady heat conduction problem in a 1D semi-infinite 

region. Recently, Li et al. (2014) have proposed a new way to measure α of eDPD fluid 

by using the so-called Periodic Heat Conduction (PHC) problem. By referring to the 

schematic diagram (Figure 4) and applying the external heat source Qext, α at a particular 

temperature To can be determined by: 

 

 

























oov

y
ext

o
TTTTC

L
Q

T
minmax

2

11

16

2
)( . (21) 

 

In the current work, Qext is 100 (following Li et al. 2014), Lx and Ly are 20 and 30, 

respectively, and To is the initial temperature of the eDPD particle. Tmax and Tmin are the 

simulated maximum and minimum temperatures in the fluid domain, respectively. Figure 

6 shows the temperature variation in the y-direction. Accordingly, T < To as y < 15 

because heat is removed from the fluid system. The temperature amplitude correlates 

with the thermal diffusivity in accordance with Equation (21). 

 

 



 
 

Figure 6: The temperature profiles of the Periodic Heat Conduction (PHC) problems for 

three temperatures (To=0.84, To=1.01 and To=1.24).  

 

3.3 The Schmidt and Prandtl numbers 

By using the measured values of D (Equation (17)), ν (Equation (18)) and α (Equation 

(21)), the Schmidt numbers (Sc = ν/D) and the Prandtl numbers (Pr = ν/α) of the eDPD 

fluid at different temperatures can be calculated. Figure 7(a) shows the Sc values obtained 

by using the current approach. The values obtained by Li et al. (2014) and Johansson et 

al. (2016) are overlaid on the same figure as well for comparison purpose.  As seen, 

amongst the three approaches, our predictions come closer to the measured values in 

general, especially for those in low temperature regime (0.91<T<1.00).  We have 

repeated the numerical measurement of Sc for 5 times and found that the standard 

deviation of Sc is fluctuating between 3%-6% of the averaged Sc value. On the other 

hand, at T=0.84 (see Figure 7(b)), it is noticed that the difference between the predicted 

and experimental values of Sc is quite discernible.  At T=0.84, our estimated s value is 

~0.0068 (see Table 1). This somewhat small value of s implies that the changes of 

dissipative and random forces (functions of wD = (1-r/rc)
s) are more abrupt at r = rc. This 

has prompted Fan et al. (2006) to choose a higher value of s (i.e. s=0.5) in their flow 

computation. If one intends to closer reproduce the Schmidt number of supercooled water 

at T=0.84, a simple solution is to increase the values of rc, γ or ρ in order to get rid of the 

small s value at T=0.84 at the expense of higher computational cost. This strategy, 

however, is currently not implemented in this work. 

Figure 8 compares the simulated Pr with the experimental data. In general, the 

agreement is quite promising except at T=0.84 which may be attributed to the reason 

stated above (s~0). The average error is ~ 6% over the entire temperature range. Here, the 

standard deviation is generally < 1% of the averaged Pr at each temperature. The 

standard deviation of Pr at T=0.84 is the highest. 
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Figure 7: Comparison of Schmidt numbers of water for (a) 0.91<T<1.24 and (b) 

0.84<T<1.24. For the present eDPD simulations, the error bars are obtained by repeating 

the simulations 5 times. Also, rc = 1.96,   = 8.0, =4. 
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Figure 8: Comparison of Prandtl numbers of water at different temperatures. The error 

bars of the present eDPD simulations are obtained by repeating the simulations 5 times.  

Also, rc = 1.96,   = 8.0, =4. 

 

 By using the methodology stated above, it is out of our curiosity to determine 

rc,crit for the eDPD parameters used by Johansson et al. (2016). By substituting s=0, γ = 

4.5, ρ = 4, T = 0.91(i.e. minimum temperature in the temperature range considered by 

Johansson et al. (2016)) which correspond to Sc ~1620, we obtain rc,crit ~ 1.7578, which 

is smaller than the rc value (=1.81) suggested by Johansson et al. (2016). Therefore, we 

have chosen rc =1.76 in our computation and the time step size Δt is increased to 0.01 due 

to the smaller γ used (Δt similar to that of Johansson et al. 2016). Accordingly, the 

corresponding temperature-dependent s function is recomputed based on the procedures 

outlined above as s*(T) = 2.5548 T 3 - 11.443 T 2 + 20.016 T - 10.665 (R2~1). Figure 9 

compares the simulated Schmidt numbers and it is interesting to note that our simulated 

Schmidt numbers are coming closer to the experimental data even though the chosen rc is 

smaller than that suggested by Johansson et al. (2016). 
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Figure 9: Comparison of Schmidt numbers of water at different temperatures (0.91 < T < 

1.24). The cut-off radius rc used for this case (rc =1.76) is smaller than that of Johansson 

et al. (2016), i.e. rc =1.81. s*(T) = 2.5548 T 3 - 11.443 T 2 + 20.016 T - 10.665 (R2~1) is 

used in the present computation.   = 4.5 and =4. 

 

 

4.0 Solidification problem 

4.1 1D solidification in a semi-infinite plate 

Having determined the eDPD parameters from Section 3.0, i.e. rc = 1.96,   = 8.0, =4 

and Δt = 0.007, we intend to investigate the 1D unsteady solidification problem in a semi-

infinite plate which was previously studied by Johansson et al. (2016) using eDPD. 

Following their geometric setup, a 2D rectangular domain of size 12x100 is built as 

shown in Figure 10. The initial temperatures of the eDPD particles are prescribed as 

To=0.95. At t=0, the temperature of the bottom wall is reduced to Tb=0.85 and the liquid 

particles are allowed to freeze thereafter. Following the approach of Willemsen et al. 

(2002), the equations of motion are solved only on non-solid particles (i.e. eDPD 

particles are frozen once they become solid). The time evolution of the solid-liquid 

interface is then examined. In order to mimic the semi-infinite behavior of the problem, 

the height of the channel is set to a relatively large value in order to minimize the wall 

effect from the top boundary (Tt= To= 0.95).  Periodic boundary conditions prevail at the 

left and right boundaries.  
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Figure 10: Schematic diagram of the 1D solidification problem. The solid and liquid 

regions are separated by the solid-liquid interface Ψ. Total lengths in x-direction (Lx) and 

y-direction (Ly) are 12 and 100, respectively. Periodic boundary conditions are applied on 

the left and right boundaries. Top and bottom boundaries are treated as walls. The 

temperatures at the top and bottom walls are 0.95 and 0.85, respectively. The initial 

temperature is T=0.95. 

 

 

 An analytical solution for this problem is available (Lunardini 1988), whereby the 

temperature at the solid and liquid regions can be expressed as: 
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Here, the subscripts S and L denote solid and liquid, respectively. Tf  is the freezing 

temperature (i.e. Tf = 0.9105). The term (.)SL denotes the ratio (.)S/(.)L. In general, the 

constant λ determines the speed of the solid-liquid interface Ψ as: 
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As shown by Lunardini (1988), the parameter λ can be solved numerically (iterative 

method) from the following implicit equation: 
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where k is the thermal conductivity (k=ρCvα). Note that the energy scale in eDPD is 
RR

BTk *
[J]. By considering the fact that the latent heat of water is LR = 334000J/kg, the 

latent heat L in DPD unit can be computed by performing the scaling operation as below: 
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By substituting the latent heat of water (LR = 334000J/kg), the density of water ρR = 

1000kg/m3, the freezing temperature R

fT =273.15K and the Boltzmann constant 
R

Bk

=1.3806 x 10-23 J/K, the latent heat in DPD unit can be computed from Equation (26) as 

L=2.68 x 104. This value is similar to that obtained by Johansson et al. (2016). 

 The simulation has been executed until t = 280. In order to compare with the 

analytical solution, we have fixed the values of αS and αL in the solid and liquid regions, 

respectively. Here, the thermal diffusivity in the liquid region αL is prescribed as 1.1. The 

mesoscopic heat friction can then be calculated accordingly from Equation (20). Besides 

that, we intend to examine the speed of solid-liquid interface for different thermal 

diffusivity ratios as well, i.e. αSL = 1.0, 2.0, 3.0 and 4.08. Similar to most of the eDPD 

models, the parameters such as ρ and Cv are assumed to be temperature-independent in 

the current work. Therefore, the case of αSL = 4.08 is analogous to the case where

08.4/ )()( 
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waterTT
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kk . 

In order to study the solidification problem, we have made a slight modification 

on the state equation initially proposed by Willemsen et al. (2000) in their enthalpy 

method (via eDPD) for the melting problem. Here, the temperature of particle i is updated 

as: 
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Generally, the state equation is used to describe the particle temperature in three distinct 

fluid regions, i.e. solid region: LTCe fvi  , transition region: fvifv TCeLTC  and 

liquid region: fvi TCe  . According to the method outlined very recently by Johansson et 

al. (2016), the states of the particles within the transition region are remained, i.e. 

liquid/solid particles are retained in liquid/solid state when transition occurs.  

 We have attempted the approach suggested by Johansson et al. (2016) and the 

results are shown in Figure 11(a). In general, the speed of the solid-liquid interface 

increases with respect to the thermal diffusivity ratio αSL. Here, the displacement of the 

solid-liquid interface Ψ is determined via identifying the locations of bins with 

temperature Tbin = Tf. The mean positions of these bins are then treated as the 



displacement of Ψ. Each cell is divided into 5 bins in the y-direction, as shown in Figure 

12. As observed from Figure 11(a), when αSL = 1.0 and 2.0, the eDPD results are quite 

close to the analytical solutions. Johansson et al. (2016) have argued that freezing took a 

longer time to start in their eDPD simulations due to the fact that a substantial amount of 

latent heat L (L=2.68 x 104) must be subtracted before freezing takes place. However, 

such behavior is not observed in our current computation, and freezing starts almost 

instantaneously as suggested by the theoretical solutions. Meanwhile, it is noticed that as 

αSL > 2.0, the predicted speed of the solid-liquid interface differs from the theoretical 

solution, and the variation becomes more apparent as αSL increases. 

 

 
(a) 

 
(b) 

Figure 11: Time evolutions of solid-liquid interface Ψ for cases (a) without mushy 

particle and (b) with mushy particles at different thermal diffusivity ratios (αSL), i.e. 1.0, 

2.0, 3.0 and 4.08. As αSL increases, the speed of Ψ increases. 
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Figure 12: The displacement measurement of solid-liquid interface Ψ(t). S, L and f denote 

respectively the solid phase, liquid phase and transition phase (mushy zone). Each cell 

(bounded by thick solid line) is divided into 5 bins in the y-direction. The temperature in 

the transition zone is Tf. 

 

 In fact, it has been well appreciated that enthalpy method involves no explicit 

formulation of the solid-liquid interface. The front location is simply recovered based on 

the enthalpy (state equation). From the state equation, the particle is in full solid state 

when LTCe fvi  and in full liquid state when fvi TCe  . However, in the transition 

zone, the particle is partially solid and partially liquid (“mushy”). Figure 13 shows the 

thickness of the mushy layer (total size of bins with T = Tf) as time progresses. As 

observed, the thickness increases to ~3 at the end of the simulation, in which its size is of 

the same order as the size of the cut-off radius rc. Owing to this, we argue that the result 

might be improved if there is a more proper definition that can be used to describe the 

states of the particles within the transition zone. Based on the state equation, it is intuitive 

for us to define the solid fraction of particle i, namely φi in the transition zone as: 
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It is obvious that φi is 0.0 and 1.0 for liquid and solid zones, respectively. In other words, 

in the transition/mushy zone, 0.0< φi < 1.0.  



 
Figure 13: The growth of mushy layer thickness as time elapses. αSL = 1.0. 

 

 

 

 Now, the underlying challenge is on how to determine the thermal diffusivity of 

mushy particle. According to Alexiades and Solomon (1993), the effective thermal 

diffusivity of a mushy particle relies heavily on the structure of the solid-liquid interface. 

Some formulations have been proposed in the numerical framework of finite-difference 

schemes. However, in the context of particle method such as eDPD, it is unclear on how 

to define such structure. Accordingly, we have linearly interpolated the thermal 

diffusivity of mushy particle from αS and αL based on the computed solid fraction: 
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A similar idea has been pursued in other particle method such as the Finite Volume 

Particle (FVP) method (Mahmudah et al. 2011). Figure 11(b) compares the positions of 

the solid-liquid interface for different thermal diffusivity ratios. As seen, the agreements 

between the eDPD results and the theoretical solutions are promising. The instantaneous 

positions of the eDPD particles are shown in Figure 14 for different time levels. As 

observed, the predicted speed of the solid-liquid interface is lower if no mushy particle is 

considered in the flow computation.  
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Figure 14: Instantaneous positions of the eDPD particles at t=70 (left), t=140 (middle) 

and t=280 (right) coloured by solid fraction φi for cases (a) with mushy and (b) without 

mushy particles. Red: solid phase. Blue: liquid phase. The solid-liquid interface is 

moving in the +y direction. 

 

 We have further compared our computed temperatures at different time levels 

with the theoretical solutions. Despite some statistical fluctuations, the predictions 

(Figure 15) show good agreement with the theoretical solutions in general. We have 

noticed that the near-wall temperature profile reported by Johansson et al. (2016) is not 

reproduced correctly as their predicted temperature experiences a sharp increase near the 

wall (c.f. Figure 3 in Johansson et al. 2016). Willemsen et al. (2000) have addressed this 

problem by reflecting the near-wall fluid particles about the wall axis. The new reflected 

particles are then assigned a temperature value in which the mean temperature of the 

original and the new particles equals to the prescribed wall temperature. This strategy 

works well; however, the mirror particles must be generated at every time step due to the 

random motion of interior particles. In the current work, we have generated an extra layer 

of wall particles located within the wall region and their positions are fixed during the 

course of the computation. In order to obtain their temperatures, we reflect the wall 

particles about the wall axis to form a new internal “imaginary” particle. Note that the 

positions of these imaginary particles are non-varying because the positions of wall 

particles are fixed. The temperature value of wall particle is then assigned accordingly 

similar to that proposed by Willemsen et al. (2000) by assuring that mean temperature of 

the wall particle and the imaginary particle equals to the prescribed wall temperature. 

Here, the temperature of imaginary particle is interpolated from the interior eDPD 

particles by using the Moving Least Square (MLS) method (Ng et al. 2016). The 

schematic diagram of our implementation of boundary condition is shown in Figure 16. 

As reported in Figure 15, the predicted near-wall temperature is reproduced correctly for 

different αSL, which is consistent to the boundary condition (Tb = 0.85) imposed.  

Also, we have performed averaging on the unsteady temperature profiles for case 

αSL = 4.08 based on 15 simulations generated from different random seeds as shown in 

Figure 17 in order to eliminate the statistical noises. As seen, there is a noticeable 

perturbation of temperature profile near the interface location due to the abrupt change of 

thermal diffusivity in the transition zone as practiced in the original method of Johansson 

et al. (2016). Meanwhile, it is appealing to note that the numerical results obtained by 

using mushy particle come closer to the analytical solution. 
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Figure 15: Temperature distribution along the y-direction for αSL = (a) 1.0, (b) 2.0, (c) 3.0 

and (d) 4.08. The dash line indicates the T = 0.9105 (freezing temperature). eDPD 

method with mushy particle is used. 

 

 
Figure 16: Wall boundary condition. Red: wall particles. Green: Imaginary particles 

(reflection from wall particles about the wall boundary). Empty circle: interior fluid 

particle. Temperatures of imaginary particles are interpolated from interior fluid particles. 

 

 

 
Figure 17: Temperature distributions along the y-direction for αSL = 4.08 at different time 

levels. The dash line indicates T = 0.9105 (freezing temperature). eDPD methods 

with/without mushy particles  are used. The temperatures are averaged by 15 sample 

data. 

 

4.2 2D solidification problem 
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Next, we intend to simulate the 2D solidification problem in a square cavity. So far, 

according to the best of our knowledge, this problem has not been addressed by the eDPD 

method. Figure 18 shows the schematic diagram of the problem.  

 
Figure 18: Schematic diagram of the 2D solidification problem. The solid (S) and liquid 

(L) regions are separated by the solid-liquid interface Ψ. Both lengths in the x-direction 

(Lx) and the y-direction (Ly) are 30. The wall temperatures are Tw=0.8509, which are 

lower than the initial fluid temperature To=1.0296.  

 

 Rathjen and Jiji (1971) have solved the 2D solidification problem on a semi-

infinite domain analytically. They have defined the Stefan number and the dimensionless 

initial temperature *

oT as 
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respectively, assuming that the thermal conductivities of both phases are similar. Here, 

the thermal diffusivity of α = 1.1 is used. And, we have set St = 0.222 and *

oT = 2.0. By 

employing the latent heat computed earlier for water, i.e. L=26800 and the corresponding 

freezing temperature Tf = 0.9105, the wall and initial temperatures can be calculated 

accordingly as TW = 0.8509 and To = 1.0296, respectively. 

 While t>0, the wall temperature is dropped to TW (below the freezing temperature) 

to initiate the solidification process. Figure 19 shows the solidification process in the 

square domain. As seen, the solid-liquid interface shifts inward to the center of the square 

domain. The predicted dimensionless positions, i.e. txx 4/*  and tyy 4/*  of the 

mushy particles for region: (0<x<15, 0<y<15) at different time levels are compared to the 

analytical solution in Figure 20. It is interesting to note that the numerical data collapse 

on the analytical solution for t< 21, indicating that our results compare well with the 

semi-infinite solution during the initial phase of the solidification process occurred in the 



current domain. The dimensionless positions of the mushy particles for t>21 are shown in 

Figure 21. Now, as expected, the simulated data no longer follow the theoretical solution 

due to the finite domain size considered in the current computation. As seen from Figure 

19(a), the shape of the solid-liquid interface mimics a square with small rounded edges at 

the corners initially. As time progresses, these rounded edges are gaining their sizes and 

makes the interface’s shape closer to a circle as witnessed in Figure 19(d). In fact, the 

interface is thickening as seen in Figures 21(a-b) as it is moving towards the center. As 

time progresses, mushy particles start to form even in the vicinity of the center of the 

square domain as seen in Figure 21(c), forming a somewhat “circular-like” transition 

zone. Finally, this “circular-like” transition region shrinks as seen from Figures 21(c-f), 

signifying the end of the solidification process. Due to the symmetry of the domain 

shape, the dimensionless positions of the mushy particles are symmetric about the line 

y*=x* illustrated in Figures 21(a-f). 

 The change of the number of mushy particles is reported in Figure 22. Here, we 

have performed averaging process based on 30 samples obtained from different random 

seeds. It is interesting to note that the number increases in an exponential manner and 

peaks at t ~ 120. Thereafter, the number of mushy particle decays in a somewhat linear 

fashion. Generally, the decay rate of mushy particle is smaller than its growth rate. 

 



 
 

Figure 19: The solidification process in a 2D square domain. The positions of solid-liquid 

interface at time (a) t=7, (b) t=56, (c) t=105 and (d) t=210 are shown. Solid and liquid 

particles are marked in red and blue colours, respectively. 

 



 
Figure 20: Comparison of the instantaneous dimensionless positions of mushy particles 

(x*, y*) with the analytical solution at different time levels. 
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Figure 21: Comparison of instantaneous dimensionless positions of mushy particles (x*, 

y*) with the analytical solution for (a) t=28, (b) t=56 (c) t=105, (d) t=126, (e) t=210, and 

(f) t=280. The red solid circle signifies the dimensionless position of the square center. 

For these particular instants, the numerical solutions do not agree with the analytical 

solutions due to the semi-infinite assumption made in the latter. 
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Figure 22: Total number of mushy particles during the 2D solidification process. 

 

4.3 Solidification in a flowing channel 

 

In this Section, we intend to study the solidification behavior of a flowing water in a 

channel subjected to cooling. Figure 23 shows the schematic diagram of the flow 

problem. Following the approach of Ge et al. (2015) in their molecular dynamics 

simulation, the liquid pump and the temperature reset regions of lengths LP and LT are 

placed adjacent to the main solution domain (size Lx x Ly) as shown in Figure 23.  

 
 

Figure 23: Schematic diagram of the flow channel. The main solution domain is of size 

Lx x Ly. The size of the computational domain is (LT + Lx) by Ly. Here, LT + Lx = 220 and 

Ly = 20. LP, LT, Lw1 and Lw2 are the lengths of the liquid pump region, the temperature 

reset region, the first wall region and the second wall region, respectively. 

 

 

 Before we study the solidification process in the channel, we wish to validate our 

implementation of the temperature reset region. Very recently, Zhang et al. (2016) have 

studied the conjugate heat transfer in a 2D channel. They have placed a temperature reset 

region of length LT = 20 upstream of the main solution domain of size Lx = 200 and Ly = 
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20. Also, they have considered the Poiseuille flow problem by ensuring all the fluid 

particles in the solution domain are subjected to an external force vector EF


= <Fext, 0.0>, 

where Fext = 0.04 (i.e. LP = LT + Lx = 220). Periodic boundary conditions are prescribed at 

the left and right boundaries while no-slip conditions prevail at top and bottom 

boundaries. The temperatures of the eDPD particles in the temperature reset region are 

fixed at Tr=1.0 before they enter the main solution domain (Lx x Ly). The wall 

temperatures in temperature reset region are set to Tr as well, while Tw1 and Tw2 are 

prescribed as 1.4.  Also, it is important to note that there is no heat exchange between the 

left and right boundaries to avoid heat from diffusing upstream from the temperature 

reset region. 

 In order to reproduce the results of Zhang et al. (2016), we have modified our 

eDPD parameters to rc = 1.0, s = 2.0, σ = 3.0, κ = 1.26 x 10-4 (or α = 1.3195, see Equation 

(20)), similar to those of Zhang et al. (2016). The time step size Δt is set to 0.007 and the 

simulation is executed for 150000 time steps to obtain a statistically steady result. Time-

averaging is then performed for another 20000 time steps. 

 Figure 24 shows the time-averaged u-velocity in the y-direction of the channel. 

Based on the simulated umax (=8.08), the theoretical solution 
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h

hy
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used to fit the numerical data. Here, h is the half channel height, i.e. h = 0.5Ly. The 

simulated kinematic viscosity max

2 2uhFe is 0.2475, which is ~3% lower than that 

reported by Zhang et al. (2016): υ = 0.255. The discrepancy may be attributed to the 

difference of wall treatment method, whereby Zhang et al. (2016) have placed the wall 

particles in the staggered manner and specified a different repulsive force parameter (afs) 

between the fluid and the wall particles. Despite its simplicity, this method involves 

rigorous fine-tuning (both the arrangement of wall particles and afs) and the optimized 

parameters are indeed problem-dependent. In the current approach, we place the wall 

particles in a random manner, which is observed to yield a smaller slip velocity near the 

wall. Similar observation has been reported by Moeendarbary et al. (2008). Also, we 

found that the near-wall density fluctuation can be suppressed by introducing randomness 

while positioning the wall particles. Bounce-back operation is performed when fluid 

particles penetrate through the walls. Figure 24 shows the time-averaged density plot as 

well and it is appealing to note that the density fluctuation near the wall is mild. 



 
Figure 24: Time-averaged velocity and density profiles in the flow channel. 

 

 

 In order to validate the temperature profile obtained, we have simulated the same 

flow configuration by using the Finite Volume (FV) method. The flow Reynolds number 

is the same as that of eDPD, i.e. Re = umaxLy/υ  = 653. It is unnecessary to consider the 

temperature reset region in FVM. Here, we have prescribed the parabolic flow profile 

(obtained from eDPD) at the inlet of the main solution domain of the FV model and fixed 

the inlet temperature and the wall temperatures (Tw1 and Tw2) to TR=300K (T = 1.0) and 

TR=420K (T = 1.4), respectively. Outflow boundary condition is specified at the flow 

outlet. Figure 25 compares the temperatures from the current eDPD method and FVM at 

different flow sections placed throughout the main solution domain. The agreement 

between both sets of result is promising. 
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Figure 25: Time-averaged temperature profiles in the flow channel at various cross 

sections: x= 25, 70, 120, 170 and 215. 

 

 

 Upon validating the implementation of the temperature reset region in eDPD, the 

same method is then applied to simulate the solidification process in the flow channel. At 

this point, it is worth to mention that the thermal conductivity of ice increases as 

temperature decreases. Accordingly, by following the scaling approach (i.e. ratio of 

thermal conductivity) proposed by Zhang et al. (2016), we have computed the 

mesoscopic heat friction of ice particles via:   0.10.1)(  T

R

T

R

Ti kkT  , where 
R

Tk is the 

experimental data of thermal conductivity measured at temperature T.  

Following the approaches of Ge et al. (2015) and Johansson et al. (2016), a liquid 

pump region is placed upstream of the main solution domain. The length of the liquid 

pump region LP is set to 36. Meanwhile, LT is set to 40. A streamwise external force of 

Fext = 0.5 is applied on fluid particles in the liquid pump region in order to drive the flow. 

Firstly, we reset the eDPD parameters to those suggested in Section 4.1 and execute an 

isothermal flow simulation by setting the temperature of the entire flow domain to T=1.0 

(including the wall temperatures). The flow computation is carried out for 170000 time 

steps (t = 1190) and the velocity is time-averaged after t=700. For this case, umax is ~0.62 

and hence Re ~ 1.83. After the flow equilibrium is achieved, the wall temperature Tw1 

(temperature of the first wall segment of length Lw1 = 100) is reduced to 0.85 and the 

solidification process is simulated. Here, we are interested to obtain the relationship 

between the wall temperature Tw1 and the channel closing time (tc).  

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

0 5 10 15 20

T

y

present

FVM

increasing x



 Figure 26(a) shows the fractions of mushy (fM), liquid (fL) and solid (fS) particles 

within the fluid zone: 70<x<100 for case Tw1 = 0.85 (intense cooling). The channel is 

considered to be closed when fL = 0. As seen, fM is experiencing a slow growth initially 

(t<30).  Figure 26(b) reveals that the growth rate of fM is ~ 0 within 5<t<20 (see also the 

illustrations in Figures 27(a-c)). In other words, the decay rate of the liquid particle is 

almost equivalent to the growth rate of solid particle within this duration. As the solid 

layers grow from the top and bottom walls and approach each other within 30<t<40 

(Figures 27 (d,e)), more liquid particles are transformed into their mushy state due to the 

cooling from the opposing solid layer. During this process, one can see a noticeable 

increase in fM and it peaks at t~40 (Figure 27 (f)). Accordingly, a higher decay rate of fL 

can be seen from Figure 26(b) within 30<t<35. As more mushy particles are transformed 

into solid (ice) and the remaining liquid particles become lesser, fM starts decaying 

beyond t=40 (Figures 27(g-h)). At t=60, liquid particles are no longer available within 

this region, further accelerating the decay rate of fM. Continuous cooling solidifies the 

remaining mushy particles and the full solid is formed at t~68 (Figure 27 (i)).  

 

 

 
(a) 

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70

f

t

Mushy

liquid

solid



 
(b) 

 

Figure 26: Time histories of (a) phase factions and (b) rates of change of phase fractions 

within the region: 70 < x < 100. Tw1 = 0.85. 
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Figure 27: Solidification process in the flow channel for the intense cooling case: Tw1 = 

0.85. Only solid (red) and mushy particles are displayed. (a) t = 1.4; (b) t = 7.0; (c) t = 21; 

(d) t = 29.4; (e) t = 35; (f) t = 40.6; (g) t = 50.4; (h) t = 61.6; (i) t = 67.2. 

 

On the other hand, when the wall is subjected to mild cooling (Tw1 = 0.90), fM is 

increasing soon after the cooling starts (Figure 28(a)), owing to the fact that the number 

of liquid particles that turn into the transition state is more than that of the mushy 

particles that turn into the solid state. In fact, at t<100, the growth rate of fM is almost on 

par with the decay rate of fL as seen in Figure 28(b), signifying that the formation rate of 

solid layers near the walls are rather mild initially. The number of mushy particles peaks 

at t~100. Beyond t=100, the decay rate of fL slows down gradually until all liquid 

particles are no longer visible at t~300. Meanwhile, fM is descending as well at a 

consistent rate within 200<t<300 as shown in Figure 28(b). At t~300 (fL = 0), still, almost 

a quarter of the region considered consist of mushy particles (fM ~ 25%). This observation 

is in contrast with the intense cooling case, where the mushy particles occupy only 10% 

of the region as fL = 0. At t>300, since liquid particles are no longer available, fM  

undergoes a sharp decrease as more mushy particles are now turning into solids. Full 

solid region is formed at t~350. 



Johansson et al. (2016) argued that the channel closing time is longer if Tw1 

approaches the free-stream temperature caused by the surface roughness between the 

solid-liquid interface. The increase of surface roughness, according to them, is due to the 

freezing/unfreezing behavior of fluid particles. In fact, we have noticed similar behavior 

in the current computation. Figure 29 shows the time evolutions of fL and fM for different 

Tw1. As seen, fluctuations in fM are more discernible as Tw1 increases, signifying that 

liquid particles may undergo freezing/unfreezing if milder cooling (high Tw1) is 

performed.  This process will prolong the channel closing time (tc), as shown in Figure 

30. In general, tc increases almost linearly with respect to wall temperature when more 

intense cooling is performed (low Tw1). However, as Tw1 increases, tc increases with the 

wall temperature in a non-linear fashion. This observation is agreeable with that reported 

by Johansson et al. (2016). 
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Figure 28: Time histories of (a) phase factions and (b) rates of change of phase fractions 

within the region: 70 < x < 100. Tw1 = 0.90. 

 

 

-0.01

0

0.01

0 100 200 300 400

d
f/

d
t

t

mushy

liquid

solid

0

0.2

0.4

0.6

0.8

1

0 100 200 300

f L

t

increasing Tw1
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(b) 

Figure 29: Time evolutions of (a) liquid fraction and (b) mushy fraction for Tw1 = 0.85, 

0.86, 0.87, 0.88, 0.89 and 0.90 within the region: 70 < x < 100. 

 

 
Figure 30: Channel closing times for various wall temperatures Tw1. 
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Conclusions 

In the current work, a more systematic method has been proposed in order to predict the 

temperature-dependent function of the exponent s appeared in the weight function of the 

dissipative force term. We have found that the selection of cut-off radius (rc) is highly 

dependent on the temperature range considered. The thermophysical properties of water 

including Schmidt and Prandtl numbers have been well reproduced within the 

temperature range considered in the current work: 253.15 K < TR < 373.15K.  

A variety of flow problems involving solidification have been studied. In order to 

properly simulate the speed of the solid-liquid interface, mushy particles have been used 

to model the eDPD particles within the transition zone. The effective thermal diffusivity 

of the mushy particles is then interpolated based on the computed solid fraction. We have 

found that this method is able to smoothen the unphysical temperature fluctuation near 

the solid-liquid interface, particularly when the thermal conductivity of solid varies 

considerably from that of liquid.  

Also, we have attempted a new way of implementing the constant temperature 

boundary conditions, without updating the positions of ghost particles at every time step 

as suggested in the literature. Accordingly, we generate the mirror particles (of the ghost 

particles in the wall layer) inside the flow domain once, and the temperatures of these 

mirror particles are interpolated from the neighbouring eDPD particles. We foresee that 

this method is more robust, if a curved wall is encountered. It has been found that the 

near-wall temperatures have been represented well by using the current approach. Also, 

we have further validated the eDPD method in 2D solidification problem which has been 

overlooked so far.  

Finally, the freezing problem in a flow channel has been computed and it has been 

found that the closing time of the channel increases linearly when intense cooling is 

performed (Tw1<0.87). Beyond this critical temperature (milder cooling), the closing time 

increases with the wall temperature in a non-linear fashion. We have observed that the 

fluctuations of mushy fraction fM are more discernible as mild cooling is performed, 

signifying that liquid particles indeed undergo frequent freezing/unfreezing during the 

solidification process. This would prolong the channel closing time undoubtedly. 
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