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REDUCED UNIT GROUPS IN TOTALLY DEFINITE
QUATERNION ALGEBRAS OVER REAL QUADRATIC

FIELDS

QUN LI, JIANGWEI XUE, AND CHIA-FU YU

Abstract. This is the survey paper of the joint work [8] in progress.
The purpose is to report the results on the classification and enu-
meration of reduced unit groups of maximal orders in definite
quaternion algebras over real quadratic fields.

1. Introduction

Let F be a totally real number field with ring of integers OF , and
B a totally definite quaternion F -algebra. Fix a maximal OF -order
O in B. Denote by Cl(O) the set of right ideal classes of O and by
h(O) := |Cl(O)| the class number of O, which depends only on B and
is independent of the choice of O, hence also denoted by h(B). Two
OF -orders in B have the same type if they are B×-conjugate. Denote
by Tp(O) the set of conjugacy classes of all maximal OF -orders in B.
The finite set Tp(O) is independent of the choice of O and we write
t(B) = t(O) := |Tp(O)| for the type number of O (or of B).

Using Eichler’s trace formula ([5], [9], cf. [12]) one can compute,
for each given B, both the class number h(O) and the type number
t(O). However, the formula for t(O) is more involved; it requires the
knowledge of the ideal class group Cl(F ) of F . In some cases where the
totally real field F has “simpler structure”, there is an alternative way
of computing t(O). Instead of working through Eichler’s trace formula
for t(O), one can compute t(O) directly from h(O). More precisely,
one has the following result (see [16]).

Proposition 1. Let B be a totally definite quaternion algebra over a
totally real number field F . If B is unramified at all finite places of F
and h(F ) is odd, then h(O) = h(F )t(O).

For example if F = Q(
√
p ), where p is a prime number, then h(F )

is odd. In [3, Corollary 18.4] one can find a complete list of quadratic
fields with odd class numbers.
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Vignéras [11, Theorem 3.1] gave an explicit formula for h(O) (also
including Eichler orders O) where F is a real quadratic field. Explicit
formulas tend to be very complicated for more general fields F . How-
ever, one can use Eichler’s trace formula to evaluate h(O) for each
given case. Kirschmer and Voight [7] have worked out the analogous
Gauss class number in this setting. They determined all Eichler OF -
orders with class number ≤ 2. Previously Brzezinski [1] obtained a
complete list of all orders (including non-Gorenstein orders) in definite
quaternion Q-algebras with class number one.

Let I1, . . . , Ih be a complete set of representatives of the ideal class
set Cl(O). The mass of Cl(O) is defined to be

Mass(O) :=
h∑

i=1

1

|O×i /O×F |
, where Oi := Ol(Ii) is the left order of Ii.

The group O×i /O
×
F is finite and called the reduced unit group of Oi.

The mass is much easier to compute. For example, if [F : Q] = 2, the
mass formula states

Mass(O) =
1

2
ζF (−1)

∏
p|d(O)

(N(p)− 1),

where ζF (s) is the Dedekind zeta function of F , N(p) = |OF/p|, and
d(O) is the discriminant of O. In general, Eichler’s trace formula gives

h(O) = Mass(O) + Ell(O),

where the elliptic part Ell(O) involves listing all imaginary quadratic
OF -orders R with non-trivial reduced unit group R×/O×F , and comput-
ing their class numbers and the number of local optimal embeddings
into O.

It is expected that Mass(O) is the “main term” for h(O). In other
words, the ideal classes [Ii] ∈ Cl(O) with O×i /O

×
F = 1 should constitute

the majority of Cl(O). More precisely, one has the following conjecture.

Conjecture 2. We have

Mass(O)

h(O)
→ 1, as long as h(O)→∞.

This expectation is verified [15, Section 6.3] for the family of totally
definite quaternion algebras B∞1,∞2 over F = Q(

√
p ) which are unram-

ified at all finite places of F with p running through all prime numbers.
In general, it follows from Eichler’s trace formula that the term Ell(O)
is a linear combination of class numbers of two kinds of CM extensions
K/F :
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• K = F (ζ2n) for a suitable class of n ∈ N;
• K = F (

√
−εi ) for a finite system of totally positive units εi.

(See (5.1) for possible CM fields K in the case [F : Q] = 2). Therefore,
one needs to compare the term ζF (−1)h(F ) with the class numbers
h(F (ζ2n)) and h(F (

√
−εi )). When the degree [F : Q] is bounded, the

numbers of terms h(F (ζ2n)) and h(F (
√
−εi )) are bounded. However, as

[F : Q] increases, one needs to show that the number of terms increases
moderately compared with the growth of ζF (−1)h(F ). One can ask
whether or not h(O) → ∞ if and only if the absolute discriminant
disc(F ) → ∞. If this is the case, then the problem would be reduced
to the analysis of the growth behavior of ζF (−1) and relative class
numbers h(K)/h(F ) in terms of the growth of the discriminant of F .

2. The Example of quaternion Q-algebras

Let B be a definite quaternion Q-algebra and O a maximal order in
B. Then (see [12, Chapter V, Proposition 3.1])

(2.1) O× ∈ {C2, C4, C6}
except that

B = B2,∞, h(O) = 1, O× ' SL2(F3), or

B = B3,∞, h(O) = 1, O× ' Z/3Z o Z/4,
where Cn denotes the cyclic group of order n and Bp,∞ denotes the
quaternion Q-algebra ramified exactly at {p,∞}. Thus, O× is cyclic ex-
cept for finitely many definite quaternion Q-algebras B and for finitely
many (not necessarily maximal) orders O up to conjugate. For any
finite group G, put

(2.2) h(B,G) := #{[I] ∈ Cl(O) | Ol(I)×/{±1} ' G},
and set h(G) = h(B,G) if B is clear from the context. By the Deuring-
Eichler-Igusa class number formula [4], for B = Bp,∞ and p ≥ 5, one
can deduce

h(C1) = h(B,C1) =
p− 1

12
− 1

4

(
1−

(
−4

p

))
− 1

6

(
1−

(
−3

p

))
,

(2.3)

h(C2) =
1

2

(
1−

(
−4

p

))
, h(C3) =

1

2

(
1−

(
−3

p

))
.

(2.4)

In particular, we have

(2.5) Ol(I)× = {±1}, ∀ [I] ∈ Cl(O) ⇐⇒ p ≡ 1 (mod 12).



4 QUN LI, JIANGWEI XUE, AND CHIA-FU YU

Note that for any fixed maximal order O ⊂ Bp,∞, we have a natural
bijection

Cl(O) '

{
isomorphism classes of su-
persingular elliptic curves
over Fp

}
[I] ←→ [E]

which identifies Ol(I) with End(E). Using the arithmetic property
(2.4) and the geometric interpretation above, we compute in [17] forms
of supersingular elliptic curves over a suitable non-perfect field, and
compute their endomorphism algebras. As a result, we obtain the
following result.

Proposition 3 ([17, Theorem 1.3]). There exists a supersingular el-
liptic curve E over some field k ⊃ Fp with End0

k(E) = Q if and only if
p 6≡ 1 (mod 12).

For the remainder of this note, we shall focus on the case where
F = Q(

√
d ) is a real quadratic field, where d > 0 is a square-free

positive integer.

3. Results for F = Q(
√
p ), p a prime

Let p be a prime number and B the totally definite quaternion F =
Q(
√
p )-algebra ramified only at the two infinite places of F , which is

also denoted by B∞1,∞2 . Fix again a maximal OF -order O in B. In
this case, there is a natural bijection (see [13, Theorem 6.2] and [15,
Theorem 6.1.2])

Cl(O) '


Fp-isomorphism classes of supersingular
abelian surfaces X over Fp with Frobenius
endomorphism π2

X = p and endomorphism
ring EndFp(X) ⊃ OF

 .

For any finite group G, put

t(G) := #

 B×-conjugacy classes of max-
imal OF -orders O ⊂ B with
O×/O×F ' G

 .

Proposition 1 also gives the class-type number relation

(3.1) h(G) = h(F ) · t(G).

Thus, knowing t(G) amounts to knowing h(G). For any n ≥ 1, denote
by Dn the dihedral group of order 2n.

Lemma 4. We have
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• p = 2, h(O) = 1 and h(S4) = 1.
• p = 3, h(O) = 2 and h(S4) = h(D12) = 1.
• p = 5, h(O) = 1 and h(A5) = 1.

Theorem 5. Assume p ≥ 7.
(1) (Hashimoto [6]) For p ≡ 1 mod 4, we have

t(C1) =
ζF (−1)

2
− h(−p)

8
− h(−3p)

12
− 1

4

(
3

p

)
− 1

4

(
2

p

)
+

1

2
,

t(C2) =
h(−p)

4
+

1

2

(
3

p

)
+

1

4

(
2

p

)
− 3

4
,

t(C3) =
h(−3p)

4
+

1

4

(
3

p

)
+

1

2

(
2

p

)
− 3

4
,

t(D3) =
1

2

(
1−

(
3

p

))
, t(A4) =

1

2

(
1−

(
2

p

))
,

and t(G) = 0 for any group G not in the above list. Here h(m) is short
for h(Q(

√
m )) for square-free integer m ∈ Z.

(2) (Li-Xue-Yu) For p ≡ 3 mod 4, we have

t(C1) =
ζF (−1)

2
+

(
−7 + 3

(
2

p

))
h(−p)

8
− h(−2p)

4
− h(−3p)

12
+

3

2
,

t(C2) =

(
2−

(
2

p

))
h(−p)

2
+
h(−2p)

2
− 5

2
,

t(C3) =
h(−3p)

4
− 1,

t(C4) =

(
3−

(
2

p

))
h(−p)

2
− 1,

t(D3) = 1, t(D4) = 1, t(S4) = 1,

and t(G) = 0 for any group G not listed above.

By Theorem 5, there exists a supersingular abelian surface X over Fp

with non-abelian reduced automorphism group RAut(X) = Aut(X)/O×F
if and only if p 6≡ 1 (mod 24). Note that p ≡ 3 (mod 4) implies that
p 6≡ 1 (mod 24). Using a similar idea of the proof of Proposition 3,
one can prove

Proposition 6. If p 6≡ 1 (mod 24), then there exists a supersingular
abelian surface X over some field k ⊃ Fp such that End0

k(X) ' Q(
√
p ).

Question 7. (1) Is p 6≡ 1 (mod 24) a necessary condition for the as-
sertion of Proposition 6?
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(2) For a given prime p, what are all possible endomorphism algebras
of supersingular abelian surfaces over some field of characteristic p > 0?

One can use results of [17] to deduce all possible endomorphism alge-
bras of non-simple supersingular abelian surfaces. The most interesting
part of Question 7 (2) then is for simple supersingular abelian surfaces.

4. Results for F = Q(
√
d )

Let F = Q(
√
d ) be an arbitrary quadratic real field, with a square

free d ∈ N. The main result may be rephrased roughly as follows:

Theorem 8. Let B be any totally definite quaternion F -algebra. We
have explicit formulas for the following two quantities:

• h(G) for each finite group G;
• t(G) for each finite non-cyclic group G.

When B = B∞1,∞2 and h(F ) is odd, we have an explicit formula for
t(G) for each finite group G.

Remark 9. (1) If one drops one of the conditions B = B∞1,∞2 and
h(F ) being odd in Theorem 8, there is no known explicit formula for
t(B) even for [F : Q] = 2. Thus, our assumption for the result of t(G)
is not too restricted. The main reason for making this assumption is
based on Proposition 1. However, the present method goes beyond
these restrictions. Indeed, our result of determination of t(G) for non-
cyclic groups G does not require this assumption and it is even simpler
if B 6' B∞1,∞2 . It is possible to explore relations of h(G) and t(G)
more explicitly by cases under a weaker condition than that h(F ) is
odd.

(2) Our result refines the explicit formula for h(B) given by Vignéras.
However, we do not have a new approach for Vignéras’s explicit class
number formula. Indeed, the way we compute all h(G) is to treat those
G 6= C1 first, and then use Vignéras’s explicit formula to obtain h(C1).

Let B be any totally definite quaternion F -algebra, and O a maximal
OF -order in B. Then

O??? := O×/O×F ∈ {Cn, Dn (1 ≤ n ≤ 6 or n = 12), A4, S4, A5}.
The idea is to regard O??? as a finite subgroup of SO3(R) via the em-
bedding

O??? ↪→ (B ⊗F R)×/R× = H×/R× ' SO3(R),

and use the well-known classification of finite subgroups of SO3(R) (See
[12, Theorem I.3.6]). Note that if ũ ∈ O??? is an element of finite order,
then ord(ũ) ∈ {1 ≤ n ≤ 6} ∪ {12}.
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There are strong restrictions on F andB if one of the groups C5, C12, A5

may occur. More explicitly,

C5 ⊂ O??? ⇐⇒ F = Q(
√

5 ) and Q(ζ10) ⊂ B,

C12 ⊂ O??? =⇒ F = Q(
√

3 ) and Q(ζ12) ⊂ B,

A5 occurs ⇐⇒ F = Q(
√

5 ) and B = B∞1,∞2 .

In fact, when d ∈ {2, 3, 5}, there exists an OF -order with non-cyclic
reduced unit group if and only if B ' B∞1,∞2 , which has already been
treated in Section 3. Thus, we may consider only the following list for
square-free d ≥ 6:

(4.1) G := {C1, C2, C3, C4, C6, D2, D3, D4, D6, A4, S4}.

For non-cyclic groups in G, one has the following inclusions:
(4.2)
D2 ⊂ D4 ⊂ S4, D2 ⊂ A4 ⊂ S4, D3 ⊂ {S4, D6}, {D2, D3} ⊂ D6.

The proof of Theorem 8 is divided into the following steps:

1. Classify further possibly non-cyclic groups G that may occur.
2. Determine explicitly t(G) for non-cyclic groups G.
3. Determine h(G) from t(G) for non-cyclic groups G.
4. Use the relation of global and local optimal embeddings. This

step produces linear relations roughly of the form

(4.3)
∑
Cn⊂G

an(G)h(G) =
∑
R

h(R)
∏
p

mp(R)

for any n ≥ 2, where R runs through certain OF -orders in
CM extensions of F and mp(R) is the number of conjugacy
classes of local optimal embeddings from R to O at p. Then we
solve recursively for h(G) starting from the maximal groups to
smaller groups. This step produces formulas for h(G) except
for G = C1.

5. For G = C1, the relation (4.3) reduces to∑
G

h(G) = h(O).

We then use Vignéras’s explicit formula for h(O) to obtain
h(C1).

The remaining part of this note will illustrate the steps of the proof.
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5. Occurrence of non-cyclic groups

In this section, we let F = Q(
√
d ) with d 6= 2, 3, 5. Denote by ε the

fundamental unit of OF . Put

S :=

{
{1} if NF/Q(ε) = −1;

{1, ε} otherwise.

For any non-trivial element ũ ∈ O???, denote byKũ := F [u] and OF [ũ] :=
OF [u], respectively, the field and order generated by any lifting u ∈
O of ũ. Clearly, Kũ and OF [ũ] are independent of the choice of u.
One can always choose a representative u so that Nr(u) ∈ S. Such a
choice of representative is unique up to sign. For any CM extension K
with maximal totally real subfield F , the Hasse index is defined to be
QK/F := [O×K : µKO

×
F ] ∈ {1, 2}, where µK is the group of roots of unity

in K.

Definition 10. We say a CM extension K/F is of type I (resp. of type
II) if QK/F = 1 (resp. QK/F = 2).

If K/F is of type I, then O×K/O
×
F ' µK/{±1}; otherwise, O×K/O

×
F is a

cyclic group of order |µK |. Thus, if µK = {±1}, then [O×K : O×F ] ∈ {1, 2}
and

K/F is of type I ⇐⇒ [O×K : O×F ] = 1.

We list some properties:

(i) If NF/Q(ε) = −1, then ord(ũ) ∈ {2, 3}. Otherwise, ord(ũ) ∈
{2, 3, 4, 6}.

(ii) If ord(ũ) = 4 then NF/Q(ε) = 1, Kũ = F (
√
−1 ) and F (

√
−1 )/F

is of type II. The CM extension F (
√
−1 )/F is of type II if and

only if 2ε ∈ (F×)2 (See [2, Lemma 2]). In particular,

2ε ∈ (F×)2 =⇒ O×
F (
√
−1 )/O

×
F ' Z/4Z and NF/Q(ε) = 1.

(iii) If ord(ũ) = 6 then NF/Q(ε) = 1, Kũ = F (
√
−3 ) and F (

√
−3 )/F

is of type II. The CM extension F (
√
−3 )/F is of type II if and

only if 3ε ∈ (F×)2 (ibid.). In particular,

3ε ∈ (F×)2 =⇒ O×
F (
√
−3 )/O

×
F ' Z/6Z and NF/Q(ε) = 1.

(iv) If NF/Q(ε) = −1, then by (ii) and (iii) both F (
√
−1 )/F and

F (
√
−3 )/F are of type I. In this case ord(ũ) = 2, 3, then there is

no element in O??? of order 4 nor 6, and O??? cannot be isomorphic
to S4 nor D6.
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(v) If NF/Q(ε) = 1, K/F is a CM-extension of type II with µK =
{±1} (so [O×K : O×F ] = 2), then K = F (

√
−ε ) and 3ε 6∈ F×2.

Thus, if K/F is a CM-extension with [O×K : O×F ] > 1, then

(5.1) K =

{
F (
√
−1 ) or F (

√
−3 ) if NF/Q(ε) = −1;

F (
√
−1 ), F (

√
−ε ), or F (

√
−3 ) if NF/Q(ε) = 1.

(vi) Note that 2ε and 3ε cannot be perfect squares in Q(
√
d ) simul-

taneously unless d = 6, in which case it does happen.
(vii) Let O1 be the subgroup of O× consisting of elements of reduced

norm 1. Then [O??? : O1/{±1}] ≤ 2, and the equality holds if
and only if NF/Q(ε) = 1 and there exists u ∈ O× such that
Nr(u) = ε. Since A4 has no subgroup of index 2, if O??? ' A4 for
a maximal order O, then O× = O×FO1.

According to our discussion, we list possible values of ord(ũ) and
possible reduced unit groups may occur.

F = Q(
√
d ), d 6= 2, 3, 5 ord(ũ) O???

2ε ∈ F×2 2, 3, 4 C2, C3, C4, D2, D3, D4, S4

3ε ∈ F×2 2, 3, 6 C2, C3, C6, D2, D3, D6,

{2ε, 3ε} ∩ F×2 = ∅ 2, 3 C2, C3, D2, D3, A4

If d = p is an odd prime, then

• NF/Q(ε) = −1 if p ≡ 1 (mod 4), so {2ε, 3ε} ∩ F×2 = ∅;
• 2ε ∈ (F×)2 if p ≡ 3 (mod 4).

Let d = 6 and B = B∞1,∞2 . We know h(Q(
√

6 )) = 1 and h(O) = 3
for any maximal OF -order O in B. By (ii) and (iii), we have h(D6) = 1
and at least one of D4 and S4 occurs. On the other hand, ζF (−1) = 1/2,
so Mass(O) = 1/4. The only possibility is 1/|S4| + 1/|D4| + 1/|D6| =
1/4. Therefore, h(D4) = h(D6) = h(S4) = 1. On the other hand, if
B 6= B∞1,∞2 , then O??? is cyclic for every maximal order O in B/Q(

√
6 )

(See Proposition 13).

Below we list the conditions on F for which order ord(ũ) may occur,
and their characteristic polynomials Pũ(x). If 2ε ∈ F×2, then we write
ε = 2ϑ2 with ϑ ∈ F , and if 3ε ∈ F×2, we write ε = 3ς2 with ς ∈ F .
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ord(ũ) Conditions Pũ(x) ∈ F [x]

2
Nr(u) = 1 x2 + 1

NF/Q(ε) = 1, Nr(u) = ε x2 + ε

3 x2 ± x+ 1

4 NF/Q(ε) = 1, 2ε ∈ F×2 x2 ± 2ϑx+ ε

6 NF/Q(ε) = 1, 3ε ∈ F×2 x2 ± 3ςx+ ε

Remark that

• for each r ∈ {3, 4, 6}, the representatives of elements of order r
are B×-conjugate up to sign;
• there are two different kinds of units of order 2 if NF/Q(ε) = 1.

6. Minimal G-orders

In this section, let F = Q(
√
d ) be a real quadratic field with a square

free d ≥ 6 and B be a totally definite quaternion F -algebra.

Definition 11. Let G be a non-cyclic group in G in (4.1). An OF -order
O is called a minimal G-order if

• O??? = O×/O×F contains a subgroup isomorphic to G;
• O is generated over OF by the representatives of elements of G.

If G = D2 or D3, we say O is of type I if every element of order 2 in G
has minimal polynomial x2 + 1. Otherwise, we say O is of type II.

If O is a maximal order with O??? ⊇ G, then O contains a minimal
G-order. For G = D4, D6 or S4, there always exists elements of order
2 in G with minimal polynomial x2 + ε. On the other hand, if G = A4

then every element of order 2 in G has minimal polynomial x2 + 1 (See
property (vii) in Section 5).

Theorem 12 (Uniqueness of minimal G-orders). Fix a non-cyclic
group G and a type (I or II if necessary). If a minimal G-order of
that type exists, then it is unique up to conjugation.

Below we list the conditions on F and B in order for G to occur and
explicit representatives of minimal G-orders.



UNIT GROUPS 11

G ε B minimal G-order O d(O)

DI
2

(−1,−1
F

)
OF [i, j] 4OF

DII
2 NF/Q(ε) = 1

(−1,−ε
F

)
OF [i, j] 4OF

DI
3

(−1,−3
F

)
OF [i, (1 + j)/2] 3OF

DII
3 NF/Q(ε) = 1

(−ε,−3
F

)
OF [i, (1 + j)/2] 3OF

D4 2ε ∈ F×2
(−1,−1

F

)
OF +OF i+OF

√
εj +OF i

√
εj 2OF

D6 3ε ∈ F×2
(−1,−3

F

)
OF (j) + iOF (j) OF

A4

(−1,−1
F

)
OF +OF i+OF j +OF ξ 2OF

S4 2ε ∈ F×2
(−1,−1

F

)
OF +OF

√
εi +OF

√
εj +OF ξ OF

Here ξ = (1 + i+ j+k)/2 ∈
(−1,−1

F

)
and d(O) is the (reduced) discrim-

inant of O.

From this table, we can draw a few conclusions:

(i) We have t(S4) ∈ {0, 1}, and t(S4) = 1 if and only if 2ε ∈ F×2
and B '

(−1,−1
F

)
' B∞1,∞2 .

(ii) We have t(D6) ∈ {0, 1}, and t(D6) = 1 if and only if 3ε ∈ F×2
and B '

(−1,−3
F

)
' B∞1,∞2 .

(iii) If t(D4) ≥ 1, then 2ε ∈ F×2 and B '
(−1,−1

F

)
' B∞1,∞2 .

(iv) If t(A4) ≥ 1, then B '
(−1,−1

F

)
. Conversely, if B '

(−1,−1
F

)
and 2 splits in F , then any minimal A4-order is maximal and
t(A4) = 1.

(v) If B '
(−1,−3

F

)
and 3 splits in F , then any minimal DI

3-order is

maximal and t(DI
3) = 1.

(vi) If NF/Q(ε) = 1 and B '
(−ε,−3

F

)
has reduced discriminant 3OF ,

then any minimal DII
3 -order is maximal and t(DII

3 ) = 1.
(vii) If both 2 and 3 are either inert or ramified in F , then t(G) = 0

for any non-cyclic group G except when B = B∞1,∞2 . This

applies to the case, for example, F = Q(
√

6 ).
(viii) If NF/Q(ε) = 1, then the quaternion F -algebra

(−ε,−1
F

)
(resp.

(−ε,−3
F

)
)

is unramified at all finite places v of F with v - 2 (resp. with
v - 3). This follows from results of d(O).

Proposition 13. Let F be a real quadratic field and B a totally definite
quaternion F -algebra. Then any reduced unit group of an order in B
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is cyclic except when

B ∈
{(
−1,−1

F

)
,

(
−1,−3

F

)}
if NF/Q(ε) = −1, or

B ∈
{(
−1,−1

F

)
,

(
−1,−3

F

)
,

(
−ε,−1

F

)
,

(
−ε,−3

F

)}
if NF/Q(ε) = 1.

Proposition 13 and (2.1) may be generalized to arbitrary totally real
fields.

Proposition 14. Let F be a totally real field. Then there exists a finite
set BF of totally definite quaternion F -algebras depending only on F
such that for any totally definite F -algebra B 6∈ BF , the reduced unit
group of any OF -order in B is cyclic.

7. Computation of t(G) for non-cyclic groups G

In this section, F = Q(
√
d ) with d ≥ 7 and B is a totally definite

quaternion F -algebra. For a minimal G-order O with a noncyclic G ∈
G, we write ℵ(O) for the number of maximal orders containing O, and
i(O) for the number of conjugacy classes of maximal orders containing
O. Clearly, i(O) ≤ ℵ(O).

Proposition 15. We have

t(D6) =

{
1 if B =

(−1,−3
F

)
and 3ε ∈ F×2;

0 otherwise;
(7.1)

t(S4) = t(D4) =

{
1 if B =

(−1,−1
F

)
and 2ε ∈ F×2;

0 otherwise;
(7.2)

t(A4) =

{
1 if B =

(−1,−1
F

)
and 2ε 6∈ F×2;

0 otherwise;
(7.3)

Note that 2ε ∈ (F×)2 implies that 2 is ramified in F . Thus, t(D4) =
t(S4) = 0 if 2 is unramified in F . Similarly, if 3 - d, then 3ε 6∈ (F×)2,
and hence t(D6) = 0.

Proposition 16. We have

(7.4) t(DI
2) =

{
1 if B =

(−1,−1
F

)
,
(
F
2

)
= 0 and 2ε 6∈ F×2;

0 otherwise.

Here the Artin symbol
(
F
2

)
= 0 if and only if 2 is ramified in F .
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Computation of t(DII
2 ) requires much detailed case studies. By the

table in Section 6, t(DII
2 ) = 0 if B is not isomorphic to

(−1,−ε
F

)
. Now

let B =
(−1,−ε

F

)
and O II

2 be the minimal DII
2 -order in the table of

Section 6, whence we assume that NF/Q(ε) = 1. One can show that if

d ≡ 1 (mod 8) then ε = a+ b
√
d ∈ Z[

√
d ] with a odd.

Lemma 17. Suppose that NF/Q(ε) = 1. Then B =
(−1,−ε

F

)
splits at

all finite places of F except when d ≡ 1 (mod 8) and ε = a+ b
√
d with

a ≡ 1 (mod 4). In the exceptional case, B is ramified at the two finite
places of F above 2.

We have the following table for ℵ(O II
2 ) and i(O II

2 ).

d ≥ 7 ε = a+ b
√
d ℵ(O II

2 ) i(O II
2 )

d ≡ 1 (mod 8) a ≡ 1 (mod 4) 1 1

d ≡ 1 (mod 8) a ≡ 3 (mod 4) 4 2

d ≡ 5 (mod 8) 2 1

d ≡ 3 (mod 4) a is even 2 2

otherwise 4 3

Proposition 18. Suppose that d ≥ 7 and B =
(−1,−ε

F

)
. Then

(7.5) t(DII
2 ) + t(D4) + t(S4) + t(D6) = i(O II

2 ).

In most cases, formula (7.5) can be simplified further. The fact that
2ε and 3ε cannot simultaneously be perfect squares in F for d ≥ 7
implies that t(D6)(t(S4) + t(D4)) = 0. For example, if d ≡ 1 (mod 4),
then 2ε 6∈ F×2 and hence t(S4) = t(D4) = 0. So in this case t(DII

2 ) +
t(D6) = i(O II

2 ). If further d ≡ 1 (mod 8) and a ≡ 1 (mod 4), then
t(D2) = t(DII

2 ) = 1.

Finally we turn to the computation of t(DI
3) and t(DII

3 ).
We first consider the case B =

(−1,−3
F

)
, which is necessary for

t(DI
3) 6= 0. One can show that the minimal S4-order O24 in the table

of Section 6 does not contain any minimal DI
3-order and the minimal

D6-order contains the minimal DI
3-order O I

3.
Note that O I

3 ' O3,∞⊗OF , where O3,∞ is the unique maximal order

up to conjugation of the quaternion Q-algebra B3,∞ =
(
−1,−3

Q

)
. If

3 splits in F , then B is ramified at two places of F over 3 and O I
3

is maximal. If 3 is ramified in F , then one can show that there is a
unique maximal order containing O I

3. If 3 is inert in F , then O I
3 is

an Eichler order of prime level 3OF and two maximal overorders are
mutually conjugate. Therefore, we always have i(O I

3) = 1.
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Proposition 19. There is only one maximal order up to conjugation
containing O I

3 and t(DI
3) + t(D6) = 1. Thus,

(7.6) t(DI
3) =

{
1 if B =

(−1,−3
F

)
and 3ε 6∈ F×2;

0 otherwise.

Lastly, suppose that NF/Q(ε) = 1. Let B :=
(−ε,−3

F

)
and O II

3 be the

minimal DII
3 -order in the table of Section 6. Write ε = a+b

√
d

2
with

a ≡ b (mod 2). If d ≡ 1 (mod 3) and NF/Q(ε) = 1, then 3 | b. This
is immediately seen by taking both sides of a2 − b2d = 4 modulo 3.
We have ε ≡ ±1 (mod 3OF ) in this case. Note that

(
F
3

)
= 0, 1,−1

according to d ≡ 0, 1, 2 (mod 3).

Lemma 20. The quaternion algebra B splits at all finite places of F
coprime to 3. If d 6≡ 1 (mod 3), then B splits at the unique prime of
F above 3 as well. When d ≡ 1 (mod 3), B splits at the two places of
F above 3 if and only if ε ≡ −1 (mod 3OF ).

We list ℵ(O II
3 ) and i(O II

3 ) in the following table.

d ≥ 7 ε ℵ(O II
3 ) i(O II

3 )

d ≡ 0 (mod 3)
ε ≡ 1 (mod p) 1 1

ε ≡ −1 (mod p) 3 2

d ≡ 1 (mod 3)
ε ≡ 1 (mod 3OF ) 1 1

ε ≡ 1 (mod 3OF ) 4 2

d ≡ 2 (mod 3) 2 1

Here p = (3,
√
d ) denotes the unique prime ideal of F above 3 when

3 | d.

Proposition 21. Suppose that d > 6 and B =
(−ε,−3

F

)
. Then

(7.7) t(DII
3 ) + t(S4) + t(D6) = i(O II

3 ).

As mentioned before, t(D6) = 0 in (7.7) when d 6≡ 0 (mod 3). If
further d ≡ 1 (mod 3) and ε ≡ 1 (mod 3OF ), then O II

3 is maximal in
B and t(DII

3 ) = 1.

8. Optimal embeddings and class-type number relations

In previous sections we determine the refined type numbers t(G) for
non-cyclic groups G. As described in the previous section, for G = D2

or D3 one actually needs finer invariants and conditions on B and F
in order to determine the numbers t(G) explicitly. The next step is to
compute h(G) for each non-cyclic group G. In this section we discuss
a class-and-type number relation in sufficient generality.
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Let F be a number field with the ring of integers OF . Let B be a
division quaternion F -algebra, O a maximal OF -order in B, and N (O)
the normalizer of O. Denote by Cl(O) the set of right ideal classes of
O, and Tp(O) the set of types of maximal orders in B. There is a
surjective map of finite sets
(8.1)
Υ : Cl(O)→ Tp(O), [I] 7→ JOl(I)K := D×-conjugacy class of Ol(I).

By [10, Theorem 22.10], the set of nonzero two-sided fractional ideals
of O forms a commutative multiplicative group I (O), which is a free
abelian group generated by the prime ideals of O. Let P(O) ⊆ I (O)
be the subgroup of principal two-sided fractional ideals of O, and
P(OF ) the group of principal fractional OF -ideals, identified with a
subgroup of P(O) via xOF 7→ xO,∀x ∈ F×. For any maximal order
O′, then there is bijection

(8.2) Υ−1(JO′K)←→ I (O′)/P(O′).

The quotient group I (O)/P(O) sits in a short exact sequence

(8.3) 1→ N (O)/(F×O×)→ Pic(O)→ I (O)/P(O)→ 1.

Here Pic(O) denotes the Picard group I (O)/P(OF ), whose cardinal-
ity can be calculated using the short exact sequence

(8.4) 1→ Cl(OF )→ Pic(O)→
∏

p|d(B)

(Z/2Z)→ 0.

It follows that

(8.5) |Υ−1(JO′K)| = 2ω(B)h(F )

|N (O′)/(F×O′×)|
,

where ω(B) denotes the number of finite primes of F that are ramified
in B.

Let O′1, . . . ,O′t(G) be representatives for maximal orders with non-

cyclic reduced unit group G. Then by (8.5), one gets

(8.6) h(G) =

t(G)∑
i=1

2ω(B)h(F )

|N (O′i)/(F×O
′×
i )|

.

Lastly, we describe the strategy for computing h(Cn). Suppose fur-
ther that B is a totally definite quaternion F -algebra. For an OF -order
R inside a CM-extension K/F , we write Emb(R,O) for the finite set
of optimal OF -embeddings of R into O. In other words,

Emb(R,O) := {ϕ ∈ HomF (K,B) | ϕ(K) ∩ O = ϕ(R)}.



16 QUN LI, JIANGWEI XUE, AND CHIA-FU YU

The group O× acts on Emb(R,O) from the right by ϕ 7→ u−1ϕu
for all ϕ ∈ Emb(R,O) and u ∈ O×. We denote m(R,O,O×) :=
|Emb(R,O)/O×|. For each nonzero prime ideal p ofOF , we setmp(R) :=
m(Rp,Op,O×p ). Let h = h(O), and I1, . . . , Ih be a complete set of rep-
resentatives of the right ideal classes Cl(O). Define Os := Ol(Is) for
each 1 ≤ s ≤ h. By [12, Theorem 5.11, p. 92],

(8.7)
h∑

s=1

m(R,Os,O×s ) = h(R)
∏
p

mp(R),

where the product on the right hand side runs over all nonzero prime
ideals of OF . A priori, Theorem 5.11 of [12] is stated for Eichler orders,
but it applies in much more generality. See [14, Lemma 3.2] and [15,
Lemma 3.2.1]. When O = O is maximal, we have

(8.8) mp(R) :=

{
1−

(
R
p

)
if p|d(B),

1 otherwise,

where
(

R
p

)
is the Eichler symbol [12, p. 94].

Let Rn be the finite set of OF -orders R in CM-extension of F such
that R×/O×F ' Cn. We also define two subsets of Tp(O):

Tp◦(O) := {JO′K ∈ Tp(O) | O′??? is cyclic}, and Tp\(O) := Tp(O)−Tp◦(O).

If Os ∈ Tp◦(O), then O???
s ' Cn if and only if Emb(R,Os) 6= ∅ for some

R ∈ Rn. When the latter condition holds, such an order R is uniquely
determined, and m(R,Os,O×s ) = 2. For each fixed R ∈ Rn, let

h(Cn, R) = h(B,Cn, R) := #{[I] ∈ Cl(O) | Ol(I)??? ' Cn, and Emb(R,Ol(I)) 6= ∅}.

Then we have

(8.9) h(Cn) =
∑
R∈Rn

h(Cn, R).

Combining (8.6) and (8.7), we obtain
(8.10)

2ω(B)h(F )
∑

JO′K∈Tp\(O)

m(R,O′,O′×)

|N (O′)/(F×O′×)|
+ 2h(Cn, R) = h(R)

∏
p

mp(R).

It is a calculation intensive process to list N (O′) for each O′ ∈ Tp\(O).
Once this is completed, it then reduces to compute the numbers of
global optimal embeddings m(R,O′,O′×) for all R ∈ Rn and JO′K ∈
Tp\(O), which is comparably much more manageable.
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