
National Center for 
Theoretical Sciences
Mathematics Division, Taiwan



A Kinetic Model of Adsorption on Solid Surfaces

Kazuo Aoki†a), Vincent Giovangigli⋆b) and Masanari Hattori‡c)

†National Center for Theoretical Sciences, National Taiwan University, Taipei 10617, TAIWAN and
Department of Mathematics, National Cheng Kung University, Tainan 70101, TAIWAN

⋆CMAP–CNRS, École Polytechnique, 91128 Palaiseau, FRANCE
‡Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, JAPAN

a)kazuo.aoki.22v@st.kyoto-u.ac.jp
b)vincent.giovangigli@polytechnique.fr

c)masanari.hattori97@gmail.com

Abstract. A kinetic model describing physisorption and chemisorption of gas particles on a crystal surface is introduced. A single

kinetic equation is used to model gas and physisorbed particles interacting with an average potential and colliding with phonons.

This equation is coupled to a kinetic equation describing localized chemisorbed species. A modified kinetic entropy is introduced

for the coupled system and the H theorem is established. Using a fluid scaling and the Chapman-Enskog asymptotic method, fluid

boundary conditions for the physisorbed and chemisorbed species are derived from the kinetic model.

INTRODUCTION

The interaction of gases with solid surfaces is of paramount importance in science and engineering applications like

hypersonic reentry [1, 2, 3], combustion [4], ablation phenomena [5], condensation and evaporation [6, 7], or chemical

deposition reactors [8]. This is a strong motivation for investigating kinetic models of adsorption processes—at a scale

intermediate between molecular simulation [9] and fluid models [10]—and deriving rigorously kinetic as well as fluid

surface boundary conditions using the Chapman-Enskog method.

Kinetic models assuming chemical equilibrium at the solid boundary only differ from Maxwell boundary con-

ditions by the values of equilibrium partial densities. More detailed kinetic models involve Boltzmann equations

taking into account the interaction of gas particles with an average surface potential as well as phonons near the

surface boundary [11, 12, 13, 14, 15, 16, 17]. These models have led to important advances in the knowledge

of condensation and evaporation, particle trapping, phonon drag, surface homogenization, or scattering kernels

[11, 12, 13, 14, 15, 16, 17]. Only gas particles have been considered in such studies, in other words, only physisorption

phenomena [11]. However, chemical bonds may also be formed between gas species and the surface and it is necessary

to consider these chemisorbed species as other chemical species compared to their parent gas phase. A kinetic model

describing both physisorption and chemisorption is presented in this study for a single monatomic gas, the situation

of multicomponent mixtures or polyatomic gases lying out of the scope of the present work.

A single kinetic equation is used to describe both gas particles and physisorbed particles interacting with the

surface. Using a single equation is natural since gas particles contacting with a surface should continuously transform

into a layer of physisorbed particles. A kinetic equation describing localized chemisorbed species in a potential field

interacting with phonons is coupled to the gas/physisorbate kinetic equation. The transition between gas/physisorbed

particles and chemisorbed particles is described by surface chemistry terms in the kinetic equations. The solid phase

is assumed to be a single species crystal and the surface reaction is written in the form

A(p) + B(s) ⇄ A(c) + B(b), (1)

where A(p) denotes the gas/physisorbate particle, A(c) the chemisorbed particle on the surface, B(s) the crystal

molecules on the surface, and B(b) the bulk crystal molecule, that is, a crystal molecule below the gas-surface in-

terface. The crystal species are assumed to be at physical equilibrium—not necessarily chemical equilibrium, and,



consistently, the phonons are assumed to be at equilibrium. A modified kinetic entropy is introduced for the coupled

gas/physisorbate and chemisorbate system and the H theorem is established.

A multiscale asymptotic analysis is performed in the gas and the adsorbate. The inner structure of the physisorbate

and the chemisorbate are analyzed and closely related to interaction potentials. The traditional species fluid boundary

conditions for adsorption [18, 10] are recovered at the interface. The Stefan gas flux from the adsorbate layer then

results from the gas/physisorbate particle production by adsorption/desorption of the chemisorbate.

KINETIC MODEL

Kinetic equations

The gas/physisorbate kinetic equation typically describes particles interacting with an average potential and colliding

with phonons [11, 12, 13]. Adding the chemisorbate equation appears to be new to the best of the authors’ knowledge.

The gas/physisorbed particles are governed by the kinetic equation [11, 12, 13]

∂t fp + c ·∂x fp −
1

m
∂xwp·∂c fp = Jp,p( fp, fp) +Jp,ph( fp) + Cp,c( fp, fc) (2)

where t denotes time, ∂t the time derivative operator, x the spatial coordinate, ∂x the space derivative operator, c the

particle velocity, ∂c the velocity derivative operator, fp(t, x, c) the physisorbate particle distribution function, wp the

interaction potential between the fixed crystal and the gas particles, m the mass of a particle,Jp,p the gas-gas collision

operator, Jp,ph the gas-phonon collision operator, Cp,c the chemical operator between gas/physisorbed particles and

chemisorbed particles and fc(t, x, c) the chemisorbed particle distribution function. The solid surface is assumed to be

planar and located at z = 0 with the spatial coordinates written x = (x, y, z)t, the tangential coordinates are denoted by

x = (x, y)t and the basis vector in the normal direction oriented towards the gas by ez. The gas-gas collision operator

Jp,p is in the traditional form and the operators Jp,ph and Cp,c vanish far from the surface as well as the potential wp

in such a way that letting z→ ∞ in (2) yields the usual kinetic equation in the gas phase. There is thus a single kinetic

framework describing both gas and physisorbed particles, the gas equation being recovered far from the surface.

The distribution function of the chemisorbate is governed by the kinetic equation

∂t fc + c ·∂x fc −
1

m
∂xwc·∂c fc = Jc,ph( fc) + Cc,p( fc, fp), (3)

wherewc denotes the interaction potential between the fixed crystal and the chemisorbed particles,Jc,ph the chemisor-

bate/phonon collision operator, and Cc,p( fc, fp) the reactive operator between chemisorbed and gas/physisorbate

species. This equation is an analog to a kinetic equation introduced to describe lattice gases by Bogdanov et al. [13].

The potentialswp andwc only depend on the normal coordinate z/δwhere δ is a characteristic range of the surface

potential. These potential are such that limζ→0wp(ζ) = +∞, limζ→+∞ wp(ζ) = 0, limζ→0wc(ζ) = +∞, limζ→ζ∞ wc(ζ) =

+∞, where 0 < ζ∞ < ∞ is the maximum location of chemisorbed species. These interaction potentials typically

involves an attractive zone and a repulsing zone as a Lenard-Jones potential integrated over all crystal particles.

Collision operators

The source term Jp,ph arise from collision operators between gas particles and phonons typically in the form

Jp,ph( fp) =

∫

(

(

gph(q) + 1
)

fp(c′) − gph(q) fp(c)
)

Wp,ph dc′dq, (4)

where gph denotes the phonon distribution function, q the phonon wave vector or quasi-momentum, c and c′ the

particle velocities before and after the interaction, and Wp,ph a transition probability. The small density approximation

fp ≪ 1 has been used in order to simplify (4) and the appearing of the additional factor 1 in the gain term is a typical

quantum effect [19, 20, 21]. The operator (4) corresponds to collisions such that mc′ = mc+ q+ b where b is a vector

of the reciprocal crystal lattice and there is another operator associated with collisions such that mc′ + q = mc + b

that lead to the same type of source term Jp,ph and the corresponding details are omitted. The equilibrium relation

corresponding to (4) reads
(

ge
ph

(q) + 1
)

f e
p (c′) = ge

ph
(q) f e

p (c), where the superscript e stands for physical equilibrium.

The equilibrium distribution f e
p is given by f e

p = npmp where np denotes the number of gas/physisorbed particles per



unit volume, mp the Maxwellian mp(c) =
(

m/2πkBTw

)3/2
exp
(

−m|c|2/2kBTw

)

, Tw is the wall temperature, and kB the

Boltzmann constant. Dividing the integrands in (4) by
(

ge
ph

(q) + 1
)

mp(c′) = ge
ph

(q)mp(c) and further assuming that
phonons are at equilibrium ge

ph
= gph yields

Jp,ph( fp) =

∫

( fp(c′)

mp(c′)
−

fp(c)

mp(c)

)

Wp,phdc′, (5)

where Wp,ph =
∫

ge
ph

(q)mp(c)Wp,phdq is the resulting transition probability that satisfies the reciprocity relation

Wp,ph(c, c′) = Wp,ph(c′, c) and is nonzero only in the neighborhood of the surface [11, 12]. The phonon collision

operator for chemisorbed particles Jc,ph is written in a similar form and the details are omitted.

The surface chemical reaction (1) involves the species A(p), A(c), B(b), and B(s) that are denoted for short by the

subscripts {p, c, b, s}. For any species i ∈ {p, c, b, s}, fi denotes the distribution function, ni the number density, mi the

Maxwellian mi(c) =
(

mi/2πkBTw

)3/2
exp
(

−mi|c|
2/2kBTw

)

, mi the particle mass (mp = mc = m), wi the interaction po-

tential with fixed crystal particles, ei the formation energy, and mi = mi exp(−(wi+ei)/kBTw) the modified Maxwellian.

The reactive collision term Cp,c associated with (1) may then be written

Cp,c =

∫

(

fc(c′) fb(c̃′) − fp(c) fs(c̃)
)

Wp,cdc̃dc′dc̃′, (6)

where Wp,c denotes a reactive transition probability. This term is similar to typical reactive terms associated with gas

phase chemical reactions and naturally involves collisions between gas and crystal particles [18, 22, 23]. Moreover,

during a reactive collision with the surface, the work done by the fixed surface on the particle is the differencewp−wc

and thus the work received by the fixed surface reads wc − wp. The work received by this fixed surface must be equal

to the difference of total energy of the fixed particles that have no kinetic energy so that during a reactive collision

we must have wc − wp = eb − es. Assuming that the potential difference wc − wp is strictly increasing from −∞ to

+∞ when ζ is varying from 0 to ζ∞, then there exists a unique ζr such that wc(ζr) − wp(ζr) = eb − es. The Dirac delta

function δ(wc −wp − eb + es) included in the reactive transition probability thus yields a Dirac delta function δ(ζ − ζr)

in the collision term. The solid is assumed to be in thermal equilibrium consistently with the assumption that phonons

are at equilibrium.

In order to embed the surface collision term (6) into the simplified framework introduced by Borman et al. where

phonons are at equilibrium, the distributions fb and fs of the crystal species should be eliminated. A standard procedure

is that already used for the phonon distribution gph in order to simplify Jp,ph and Jc,ph. To this aim, we use the

chemical equilibrium relation f ce
c f ce

b
= f ce

p f ce
s where the superscript ce stands for chemical equilibrium. The chemical

equilibrium distributions read f ce
i = nce

i mi where the chemical equilibrium densities nce
i , i ∈ {p, c, b, s}, are related by

the equilibrium constraint between chemical potentials µce
c + µ

ce
b
= µce

p + µ
ce
s . The chemical potential of the ith species

is given by µi = log(ni/zi) where zi = Λ
3
i exp(−ei/kBTw) is the partition function of the ith species per unit volume,

Λi = (2πkBmiTw)1/2/hp and hp the Planck constant. We also assume that the solid remains at physical equilibrium,

assuming that chemistry is sufficiently slow, so that fb(c̃′) = f e
b

(c̃′) = nsfmb(c̃′) and fs(c̃) = f e
s (c̃) = nsf(1 − σ)ms(c̃)

where 1 − σ = ns/nsf and σ denotes the coverage, that is, the fraction of sites occupied by the particles A(c). The

number of surface molecules per unit volume nsf is a constant characteristic of the surface and the coverage σ is

independent of ζ under the natural assumption that the chemisorbate is a monolayer. Dividing the integrands in (6)

by the factor f ce
b

f ce
c = f ce

s f ce
p , combining the previous assumptions, the resulting collision term is found after some

algebra in the form

Cp,c =

∫

( fc(c′)

mc(c′)
− (1 − σ)

fp(c)

mp(c)

)

Wp,cdc′, (7)

where Wp,c =
∫

ms(c̃)mp(c)nsf exp
(

−(es+ep)/kBTw

)

Wp,cdc̃dc̃′ is the resulting reactive transition probability. The source

term in the chemisorbate equation is in a similar form and the details are omitted. We may then introduce naturally

the number densities per unit surface ñs =
∫

ns dz and ñsf =
∫

nsf dz such that ñs = ñsf(1 − σ) and the factor 1 − σ

associated with coverage satisfies the ordinary differential equation

∂tñs = ñsf∂t(1 − σ) =

∫

Cp,c dc dz. (8)

The factor 1 − σ is the only nonequilibrium part that remains from the crystal species B(s).



The collisional invariants of the gas collision operatorJp,p are classically associated with particle numberψ1 = 1,

momentum ψ1+ν = mcν, ν ∈ {1, 2, 3}, and energy ψ5 = 1
2
m|c|2 + ep. Contrarily to gas-gas collision, momentum and

energy are not conserved by the collision operators Jp,ph and Jc,ph since it may be given to phonons. Both operators

Jp,ph and Jc,ph only conserve the number of gas particles with the invariant ψ1 = 1 as well as the reactive collision

operators Cp,c and Cc,p.

Kinetic entropy

The total kinetic entropy associated with the gas and the adsorbate is defined by

Skin = −kB

∫

fp
(

log( fp/mp) − 1
)

dc dz − kB

∫

fc
(

log( fc/mc) − 1
)

dc dz − kBñsf(1 − σ)
(

log(1 − σ) − 1
)

. (9)

Multiplying the Boltzmann equation (2) by log( fp/mp), integrating with respect to c and z, proceeding similarly for

fc, multiplying the ordinary differential equation (8) by log(1 − σ), and adding the resulting equations, we obtain that

∂tS
kin = vkin where vkin is the integrated entropy source. Using standard argument from the kinetic theory, the entropy

source vkin may then be written vkin = vkin
p,p + v

kin
p,ph
+ vkin

c,ph
+ vkin

p,c + v
kin
c,p + v

kin
s with

v
kin
p,p =

kB

4

∫

Υ
(

fp f̃p, f ′p f̃ ′p
)

Wp,p dc dc̃ dc′dc̃′dz, v
kin
p,ph =

kB

2

∫

Υ
(

fp/mp, f ′p/m
′
p

)

Wp,ph dc dc′dz,

v
kin
c,ph =

kB

2

∫

Υ
(

fc/mc, f ′c /m
′
c

)

Wc,ph dc dc′dz, v
kin
p,c + v

kin
c,p + v

kin
s = kB

∫

Υ
(

fp(1 − σ)/mp, f ′c /m
′
c

)

Wp,c dc dc′dz,

where Υ(x, y) = (x − y)(log x − log y). Since Υ only takes nonnegative values, all quantities vkin
p,p, vkin

p,ph
, vkin

c,ph
, and

v
kin
p,c + v

kin
c,p + v

kin
s are nonnegative terms and the H theorem is established.

MULTISCALE FRAMEWORK

Fluid scaling

Let T⋆ denotes a characteristic temperature, n⋆ a number density, τ⋆p a collision time, m a particle mass, v⋆ =
(kBT⋆/m)1/2 a characteristic thermal velocity, f ⋆ = n⋆/v⋆3 a characteristic particle distribution and λ⋆ = τ⋆p v⋆ the

mean free path. Similarly, let τ⋆
f

denotes a characteristic fluid time, l⋆ = τ⋆
f

v⋆ the fluid length, τ⋆
ph

a characteristic

time for phonon interaction related to characteristic transition probabilities 1/τ⋆
ph
= W

⋆
p,ph

v⋆3 = W
⋆
c,ph

v⋆3, and δ⋆ a

typical length characteristic of the range of surface potential. Dividing both kinetic equations (2)(3) by n⋆/τ⋆
f

(v⋆)3, the

resulting rescaled equations involve the dimensionless parameters ǫp = τ
⋆
p /τ

⋆
f
= λ⋆/l⋆, ǫph = τ

⋆
ph
/τ⋆

f
, and ǫ = δ⋆/l⋆.

The characteristic times and lengths at the solid/gas interface are generally such that τ⋆
ph
≤ τ⋆p ≪ τ⋆

f
and δ⋆ ≤ λ⋆ ≪ l⋆

and ǫp represents the Knudsen number [12]. Since our aim in this work is to derive fluid boundary conditions, it is

assumed that the small parameters ǫp, ǫph, and ǫ are of the same asymptotic order of magnitude

ǫph = αph ǫ, ǫp = αp ǫ, (10)

where αph and αp are positive constants. From a physical point of view, this means that particle collisions and phonon

interactions are considered to be fast in comparison with fluid time and that both the mean free path λ⋆ and the surface

potential characteristic range δ⋆ are considered to be small in comparison with the fluid length l⋆. This scaling may

be seen as the simplest fluid scaling of the adsorbate layer model. Of course, other scalings may also be introduced as

for instance a kinetic scaling upon using τ⋆p instead of τ⋆
f

for rescaling the kinetic equations [16, 17].

Keeping the same notation for rescaled quantities, the resulting rescaled kinetic equations are in the form

∂t fp + c ·∂ fp + cz ·∂z fp −
1

m
∂zwp ∂cz

fp =
1

αpǫ
Jp,p +

1

αphǫ
Jp,ph + Cp,c, (11)

∂t fc + c ·∂ fc + cz ·∂z fc −
1

m
∂zwc ∂cz

fc =
1

αphǫ
Jc,ph + Cc,p (12)

where c denotes the tangential component of the particle velocity and ∂ the tangential derivative operator. Use has

been made that wp and wc only depend on z and the chemistry operators Cp,c and Cc,p are assumed to be slow.



Expansion in the gas

The kinetic equation in the gas is obtained from (11) by letting wp = 0, Jp,ph = 0 and Cp,c = 0 and reads

∂t fg + c ·∂ fg + cz ·∂z fg =
1

αpǫ
Jp,p( fg, fg), (13)

where fg is the gas distribution function. This equation coincides with the traditional scaling of the Chapman-Enskog

method. Since we investigate a fluid interacting with a wall, it is also natural to assume that the gas velocity vg

vanish at zeroth order near the surface. We may thus write vg = ǫvg near the surface and the normal component

vgz(0) = vg(0)·ez = ǫ vg(0)·ez is the Stefan velocity associated with the production of gas species.

Since the fluid convection velocity is of first order near the surface, the classical Chapman-Enskog expansion

must be corrected and the terms proportional to the velocity vg must be shifted by one order. The corrected expansion

of fg in the gas phase near the surface is thus in the form fg(t, x , z, c) = f (0)
g (t, x , z, c) + αpǫ f (1)

g (t, x , z, c) + O(ǫ2)

with f (0)
g and f (1)

g given by

f (0)
g = ng

( m

2πkBTg

)
3
2

exp
(

−
m|c|2

2kBTg

)

, f (1)
g =

(m c·vg

kBTg

+ αpφ
(1)
g

)

f (0)
g , (14)

where Tg denotes the gas temperature and ng the gas number density. The corrector φ
(1)
g reads φ

(1)
g = −φ

λ·∂x(1/kBTg)

where φλ is a vector function solution of the integral equation Ig(φλ) = (
5kBTg

2
− 1

2
m|c|2)c with the Enskog constraints

∫

f (0)
g φλψldc = 0 for 1 ≤ l ≤ 5 and Ig is the linearized collision operator around the Maxwellian f (0)

g .

Multiscale expansion

The kinetic model appears as multiscale since it involves the normal coordinate z as well as the inner layer coordinate

ζ = z/ǫ associated with surface potentials. The gas/physisorbate distribution is expanded in the multiscale form

fp =
∑

i

ǫi f (i)
g (t, x , z, c) +

∑

i

ǫiϕ
(i)
p (t, x , ζ, c), (15)

where the outer expansion is that of the gas and
∑

i ǫ
iϕ

(i)
p (t, x , ζ, c) is the adsorbate layer corrector expansion with

correctors ϕ
(i)
p (t, x , ζ, c) converging to zero as ζ → ∞. Any function F (z) of the normal coordinate z may also be

expanded near z = 0 as a function of ζ as F
(

z(ζ)
)

= F (0) + ǫζ∂zF (0) + O(ǫ2) so that the inner expansion of the

distribution fp in the physisorbate is obtained by expanding the outer expansion around z = 0 with z = ǫζ and adding

the corrector expansion. This inner expansion is obtained in the form

fp =
∑

i

ǫi
f
(i)
p (t, x , ζ, c), f

(0)
p = f (0)

g (0) + ϕ
(0)
p , f

(1)
p = f (1)

g (0) + ζ∂z f (0)
g (0) + ϕ

(1)
p . (16)

The chemisorbate distribution is expanded in the simpler form

fc =
∑

i

ǫi
f
(i)
c (t, x , ζ, c), (17)

since the chemisorbate is localized in the adsorption layer. Since ζ is the proper normal coordinate of the adsorbate

layer, the rescaled equations obtained from (11)(12) to be used for the inner expansions (16)(17), are finally

∂t fp + c ·∂ fp +
1

ǫ
cz ∂ζ fp −

1

ǫ

1

m
∂ζwp ∂cz

fp =
1

αpǫ
Jp,p +

1

αphǫ
Jp,ph + Cp,c, (18)

∂t fc + c ·∂ fc +
1

ǫ
cz ∂ζ fc −

1

ǫ

1

m
∂ζwc ∂cz

fc =
1

αphǫ
Jc,ph + Cc,p. (19)



ASYMPTOTIC ANALYSIS OF THE ADSORBATE

Zeroth order expansion in the physisorbate

In the physisorbate, at zeroth order, it is found from (18) that

cz ∂ζf
(0)
p −

1

m
∂ζwp ∂cz

f
(0)
p =

1

αp

Jp,p(f
(0)
p , f

(0)
p ) +

1

αph

Jp,ph(f
(0)
p ). (20)

Multiplying equation (20) by log(f
(0)
p /mp), integrating over ζ ∈ (0,∞) and c ∈ R3, using that f

(0)
p → 0 as ζ → 0, and

f
(0)
p → f (0)

g (0) as ζ → ∞, in such a way that limζ→∞

∫

czf
(0)
p

(

log(f
(0)
p /mp) − 1

)

dc =
∫

cz f (0)
g

(

log( f (0)
g /mp) − 1

)

dc = 0,

and using standard argument form kinetic theory, we obtain that

kB

4αp

∫

Υ
(

f
(0)
p f̃

(0)
p , f

(0)′
p f̃

(0)′
p

)

Wp,p dc dc̃ dc′dc̃′dζ +
kB

2αph

∫

Υ
(

f
(0)
p /mp, f

(0)′
p /m′p

)

Wp,ph dc dc′dζ = 0.

Therefore, since the integrands are nonnegative, they must vanish identically. This shows that f
(0)
p is Maxwellian and

this Maxwellian is at temperature Tw and with zero average velocity sinceJp,ph(f
(0)
p ) = 0. Writing this Maxwellian for

convenience in the form f
(0)
p = np exp

(

−wp/kBTw

)

mp where mp is the wall Maxwellian, and using (20), it is obtained that

cz∂ζnpmp = 0 so that np is independent of ζ. The constant np is identified by letting ζ → ∞ and this yields np = ng(0)

and Tw = Tg(0) so that

f
(0)
p = npmp, np = ng(0) exp

(

−
wp

kBTw

)

. (21)

Incidentally it has been obtained that Tg(0) = Tw, vg(0)·ex = vg(0)·ey = 0 which is generally assumed to hold a
priori in fluid mechanics and is a classical result from kinetic theory [6]. Moreover, the expression of f

(0)
p shows

that the physisorbate is naturally distributed as the function exp
(

−wp/kBTw

)

, as was intuitively expected, and that the

physisorbate is at equilibrium with the bath of gas particles with number density ng(0).

Zeroth order expansion in the chemisorbate

In the chemisorbate, it is found from (19) that

cz ∂ζ f
(0)
c −

1

m
∂ζwc∂cz

f
(0)
c =

1

αph

Jc,ph(f
(0)
c ). (22)

Multiplying by log(f
(0)
c /mc), integrating over ζ ∈ (0, ζ∞) and c ∈ R

3, and using that f
(0)
c goes to zero as ζ → 0 or as

ζ → ζ∞, it is obtained that

kB

2αph

∫

Υ
(

f
(0)
c /mc, f

(0)′
c /m′c

)

Wc,ph dc dc′dζ = 0.

Therefore, since the integrand is nonnegative, it vanishes identically. This shows that f
(0)
c is Maxwellian at temperature

Tw and with zero average velocity since Jc,ph(f
(0)
c ) = 0. Writting this Maxwellian for convenience in the form

f
(0)
c = ncmc, nc = nc exp

(

−
wc

kBTw

)

, (23)

where mc is the wall Maxwellian and substituting this identity in (22) it is obtained that ∂ζnc = 0 and nc is independent

of ζ. The chemisorbate is thus distributed as the function exp
(

−wc/kBTw) as was intuitively expected and is localized

since wc goes to infinity as ζ → 0 as well as for ζ → ζ∞. In addition, nc is independent of the gas phase value ng(0) at

variance with the physisorbate that is at equilibrium with the bath of gas.



Species fluid boundary condition

The zeroth order species conservation equations are obtained by taking the scalar product of the kinetic equations (18)

and (19) by ψ1 = 1—which is equivalent to integrating with respect to the velocity variable—and keeping only zeroth
order terms. In the physisorbate, it is obtained that

∂t

∫

f
(0)
p dc + ∂ζ

∫

czf
(1)
p dc =

∫

Cp,c(f
(0)
p , f

(0)
c )dc, (24)

where we have used that
∫

c f
(0)
p dc = 0 and that the collisional invariant ψ1 = 1 is orthogonal to Jp,p and Jp,ph.

Letting ζ → ∞ in equation (24) it is obtained that ∂t

∫

f (0)
g (0) dc = 0, using that the limit of the derivative ∂ζ

∫

czf
(1)
p dc

can only be zero because
∫

czf
(1)
p dc has a finite limit as ζ → ∞. This yields that ∂tng(0) = 0 at zeroth order which

is also a consequence of the gas species conservation equation ∂tng + ∂x·(ngvg) = 0 since vg = O(ǫ) around z = 0.

This zeroth order relation implies that ∂ζ
∫

czf
(1)
p dc =

∫

Cp,c(f
(0)
p , f

(0)
c )dc at zeroth order. Keeping in mind that f

(1)
p =

f (1)
g (0)+ ζ∂z f (0)

g (0)+ϕ
(1)
p and noting that

∫

cz
(

∂z f (0)
g

)

(0)dc = 0 it is obtained by integrating over ζ ∈ (0,∞) and c ∈ R3,

using f 1
g (0) + ϕ

(1)
p → 0 as ζ → 0 and ϕ

(1)
p → 0 as ζ → ∞, and rescaling from ζ to z, that

ng(0)vgz(0) =

∫

Cp,c(f
(0)
p , f

(0)
c )dcdz. (25)

In particular, at zeroth order, the dynamic term of the physisorbate plays no role and the Stefan flux towards the gas

phase ng(0)vgz(0) is due to the production of gas/physisorbate by adsorption/desorption of the chemisorbate.

The overall species conservation equation in the chemisorbate is obtained similarly and reads

∂tñc = ∂tn̄c

∫

exp
(

−
wc

kBTw

)

dz =

∫

Cc,p(f
(0)
c , f

(0)
p )dcdz, (26)

where ñc = n̄c

∫

exp
(

−wc/kBTw

)

dz represents the total amount of chemisorbate available in the layer and may be

interpreted as the overall surface number density of the chemisorbate. Therefore, we have recovered the traditional

gas and chemisorbate fluid boundary conditions (25)(26) at a surface with adsorption [10, 18].

Surface chemical reaction

The surface chemistry production may next be written by using the chemical potentials as well as surface species
quantities. The reaction rate is first rewritten in the form

∫

Cp,c(f
(0)
p , f

(0)
c )dcdz = Kp,c

(nc

zc

− (1 − σ)
ng(0)

zg

)

,

where Kp,c =
∫

Wp,cdcdc′dz is the overall surface reaction constant. It is then natural to rewrite the adsorption source

term using the surface number density ñc = nc

∫

exp
(

−wc/kBTw

)

dz with the corresponding partition function [24]

z̃c = zc

∫

exp
(

−
wc

kBTw

)

dz.

Keeping in mind that ñc = σñsf, we may further use the 1 − σ factor coming from the free surface site concentration

in order to form the chemical potential of the chemisorbed species per unit surface

µ̃c = log
( ñc

z̃c

1

1 − σ

)

= log
( ñsf

z̃c

σ

1 − σ

)

.

The factor σ/(1 − σ) has then been recovered in the chemical potential of the chemisorbed species µ̃c as given by

statistical mechanics. Keeping in mind that the chemical potential in the gas is µg = log(ng/zg), the surface source

term may further be rewritten as
∫

Cp,c(f
(0)
p , f

(0)
c )dcdz = K ′p,c

( ñsf

z̃c

σ

1 − σ
−

ng(0)

zg

)

= K ′p,c

(

exp(µ̃c) − exp
(

µg(0)
)

)

,

whereK ′p,c = (1−σ)Kp,c. Finally, at surface chemical equilibrium, we have µ̃c = µg(0) so that σ/(1−σ) is proportional

to ng(0) and the Langmuir isotherm [10] has been recovered.



CONCLUSION

A kinetic model describing physisorption and chemisorption of gas particles on a crystal surface has been introduced,

at a scale intermediate between molecular and macroscopic. The phonon and surface collision terms have simplified

by assuming that the phonons and the crystal species are at equilibrium and the coupled system of gas/physisorbate

and chemisorbate kinetic equations satisfies the H theorem. Using a fluid scaling and a multiscale framework, the

structure of the adsorbate layer has been analyzed in terms of interaction potentials and the traditional fluid species

boundary conditions have been recovered.

Many extension of this work may be considered like the situation of polyatomic gases or that of mixtures of

gases involving complex surface reactions networks. First order accurate expansions with surface diffusion and rough

surfaces are also of high scientific interest. Finally, multitemperature flows as well as state to state models also involve

gas surface interactions of paramount importance for reentry and may also be investigated with similar models.
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