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ABSTRACT. The main purpose of this paper is to establish the boundedness of sin-
gular integrals with flag kernels on weighted Hardy spaces theory associated with flag
structures. The theory of weighted Hardy spaces includes weighted Hardy spaces H %W
weighted generalized Carleson measure spaces CM Opf’w (the dual spaces of H%w), and
the boundedness of singular integrals with flag kernels on these spaces. We also derive
a Calderén-Zygmund decomposition and provide interpolation of operators acting on
H %w. The main tool for our approach is the weighted Littlewood-Paley-Stein theory.
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1. INTRODUCTION

The classical Calderén-Zygmund singular integral operator theory is the extension to
higher dimensions of the theory of the Hilbert transform. These integral operators have
singularity at the origin only, and the nature of this singularity leads to the invariance
of these singular integral operators under the classical dilations on R" given by dxr =
(0x1,...,0x,) for & > 0. On the other hand, the product theory of singular integral
operators on R" is concerned with those singular integral operators which are invariant
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under the n-fold dilations: dz = (6121, 622, ..., 0,%y),d; > 0 for 1 < j < n. The product
theory of R™ began with the strong maximal function studied by Zygmund, then continued
with the Marcinkiewicz multiplier theorem, and more recently has been studied in a variety
of directions, for example, product singular integrals and Hardy and BMO spaces studied
by Gundy, Chang, R. Fefferman, Journé, Pipher and Stein et al. ([CF1], [Fe], [FS2], [GS],
[Jo], [Pi] etc.).

A new extension of product theory came to light with the proof by Miiller, Ricci and
Stein [MRS] for the L” boundedness, 1 < p < oo, of Marcinkiewicz multipliers on the
Heisenberg group H". This is surprising since Marcinkiewicz multipliers, which are invari-
ant under a two-parameter group of dilations on C" x R, are bounded on LP(H"), despite
the absence of a two-parameter automorphic group of dilation on H". Miiller, Ricci and
Stein proved that the Marcinkiewicz multipliers on the Heisenberg groups are not the
classical Calderén-Zygmund singular integrals but are singular integrals with flag kernels.
Nagel, Ricci and Stein [NRS] studied a class of operators on nilpotent Lie groups given
by the convolution with flag kernels. They proved that product kernels can be written
as finite sums of flag kernels and that flag kernels have good regularity, restriction and
composition properties. Applying the theory of singular integrals with flag kernels to the
study of the [y-complex on certain quadratic CR submanifolds of C", they obtained LP
regularity for certain derivatives of the relative fundamental solution of [J, and for the
corresponding Szego projections onto the null space of [J, by showing that the distribution
kernels of these operators are finite sums of flag kernels. In order to prove the optimal
estimates for solutions of the Kohn-Laplacian for certain classes of model domains in sev-
eral complex variables, Nagel and Stein [NS] applied a type of singular integral operator
whose novel features are related to product theory and flag kernels. These operators differ
essentially from the more standard Calderén-Zygmund operators that have been used in
these problems hitherto. More recently, Nagel, Ricci, Stein and Wainger [NRSW] (see
also [GH, GI2]) further generalized the theory of singular integrals with flag kernels to a
more general setting, namely, homogeneous group. For other interesting works in mul-
tiparameter harmonic analysis, we refer readers to Hyténen and Martikainen [HM] and
Pott and Sehba [PS] and the references therein.

As mentioned, on the Euclidian space convolution with a flag kernel is a special case
of product singular integrals. As a consequence, the LP,1 < p < oo, boundedness of
singular integrals with flag kernels follows automatically from the same result for product
singular integrals (see [FS2]). However, since singular integrals with flag kernels have good
regularity, a natural question arises: can one develop an appropriate Hardy space theory
for singular integrals with flag kernels, which differs from the classical product Hardy
space as developed in [GS, CF1, Fe]? Moreover, since the product theory is not available
on the Heisenberg groups, it is interesting to ask: can one provide the Hardy space
boundedness for the Marcinkiewicz multiplier on the Heisenberg groups [MRS]? To answer
these questions, the multiparameter Hardy spaces associated to singular integrals with
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flag kernels on the Heisenberg groups were developed in [HLS]. An atomic decomposition
for flag Hardy spaces was established in [W1]. Very recently, the third author [W2]
established the weighted LP,1 < p < 00, estimates for singular integrals with flag kernels
on homogeneous groups.

The purpose of this paper is to establish the boundedness of singular integrals with
flag kernels on weighted Hardy spaces theory associated with with flag structures. The
theory of weighted Hardy spaces includes weighted Hardy spaces Hff’w and weighted
generalized Carleson measure spaces C'M O%w (the dual spaces of H %w). We also derive a
Calderén-Zygmund decomposition and provide interpolation of operators acting on H %w.
To achieve this goal, we will employ the following approaches.

1. The spaces of test functions and distributions are important for developing the Hardy
space theory. In the classical case, as in the remarkable work of C. Fefferman and Stein
[FS1], these spaces are just the Schwartz test functions and tempered distributions. To
study the Hardy space associated flag kernels, in the current paper, we will use the partial
cancellation conditions to define the test function space. Roughly speaking, any Schwartz
test function satisfying the cancellation conditions only in one sub-variable belongs to this
space. This condition was used by Nagel, Ricci, Stein and Wainger [NRSW].

2. The classical Calderén reproducing formula was first used by Calderén in [Cal. Such a
reproducing formula is a very powerful tool, in particular, in the theory of wavelet analysis.
See [M] for more details. See also (8.17) in [NRSW] for such a formula on homogeneous
groups. In this paper, we establish two flag discrete Calderéon’s reproducing formulae. The
first one involves those test functions whose Fourier transforms are compactly supported,
and it converges in test function spaces and distributions mentioned above. The second
kind of formula is expressed in term of bump functions and it converges only in L? norm.
Both formulas will be the main tools for developing the whole theory.

3. We establish the Plancherel-Polya type inequality. The classical Plancherel-Polya
inequality says that the LP norm of f whose Fourier transform has compact support is
equivalent to the /P norm of the restriction of f at appropriate lattices. It was well
known that the classical Plancherel-Polya inequality plays a crucial role for developing
the Littlewood-Paley-Stein theory. See [DHLW] for such inequalities for weighted product
Hardy spaces. In this paper, we will establish the Plancherel-Polya inequalities associated
with the flag structure and provide the Littlewood-Paley-Stein theory. As a consequence,
weighted flag Hardy spaces are well defined.

4. We then introduce generalized Carleson measure spaces. It is well known that in
the classical one parameter case, the space BMO, as the dual of H', can be characterized
by the Carleson measure. Moreover, applying atomic decompositions of product Hardy
spaces, Chang and R. Fefferman in [CF1] proved that the dual of the product H' can be
characterized by the product Carleson measure. In this paper, we characterize the dual of
weighted flag Hardy spaces via generalized Carleson measure. Our approach is achieved
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by applying techniques of weighted sequence spaces, which enables us to avoid using the
atomic decompositions.

5. Finally, we establish a Calderén-Zygmund decomposition for H%w. The Calderén-
Zygmund decomposition played a crucial role in developing Calderén-Zygmund operator
theory. This decomposition has many applications in harmonic analysis and PDE’s. Such
a decomposition for the product Euclidean spaces was first provided by Chang and Feffer-
man in [CF2| by atomic decompositions. In this paper, Calderén-Zygmund decomposition
is achieved by applying the discrete Calderén’s reproducing formula. As an application,
we derive interpolation results for sublinear operators on H %w.

For simplicity, in this paper we shall focus on the case of three parameters, but it is
straightforward from the proofs to extend our theory to k (k > 3) parameters. To describe
the main results in this paper, we first recall the A7 (R"Y) weights.

A rectangle R in R™ x R"2 x R™ := RY is called a flag rectangle if R = Q1 x Q2 x Qs,
where ();’s are cubes in R™ with side-length

£(Q1) < U(Q2) < L(Q3).

Denote by R the set of flag rectangles associated with F and by R% the set of dyadic
flag rectangles associated with F. For J = (ji, j2,73), let R% be the set of dyadic flag
rectangles R = Q1 x Q2 x Q3 with side-length £(Q,) = 27, £(Qy) = 271V72 ((Q3) = 271VI2Vis
where a V b denotes max{a,b}. The following flag mazimal function was introduced in
[INRSW]:

Mx(f)(@) = sup ﬁ /R Fw)ldy.

Rox
RERr

The natural class of Muckenhoupt weights associated with F can be defined as follows.

Definition. Let 1 < p < oo and w be a nonnegative locally integrable function on R¥.
We say that w is a flag weight, denoted by w € A7 (RY), if

1 1 p—1
— de ) [ — —1/(p=1) g )
RSG%DJT(“Q'/Rw(:z:) :1:)<|R|/Rw(:c) :c) < 00

We say that w is in A (RY) if there is a constant C such that
Mz(w)(z) < Cw(z) ae. xRN,

Let AL(RY) = Ujcpeno Ay (RY). We use g, := inf{q : w € AJ(RV)} to denote the
critical index of w.

We remark that this class of Muckenhoupt weights is different from the classical weight
class A,(RY) or the product weight class AP™°(RY). Their relations are as follows (see
Appendix for details).

(1.1) APO(RN) C AT(RY) € A,(RY) for 1 < p < oc.
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To develop the weighted Hardy space theory associated with flag singular integrals, as
in the classical case, appropriate test functions and distributions are needed. For this
purpose, we define three-parameter flag test functions as follows.

Definition. A Schwartz function f on RY is said to be a flag test function in Sz(RY) if
it satisfies the following partial cancellation conditions

(1.2) f(z1, z2, x3)x§drs =0 for all multi-indices a.
R"3

We would like to point out that these partial cancellation conditions were also considered
in [NRSW]|. Let S%(R”) denote the dual of Sz(RY).

Let Ny = ny 4+ ng + ng, Ny = ng + ng and N3 = ng. For i = 1,2, 3, let ) € S(RM)
satisfy

(1.3) supp 00 (€) € {€:1/2 < |¢] < 2}

and

(1.4) Y (i) =1 forall € € RV\{0}.
JiEL

The Littlewood-Paley-Stein square function of f € S%(RY) is defined by
1/2
g (@) = (X 3 o flen)Pyal@))
JEZ? RERYL
where and hereafter x denotes the “left-lower corner” of R (i.e. the corner of R with

the least value of each coordinate component) and ¢; = Q/)j(l) * j(z) * ](j) with 1/)](:) =

Spn—n @ Y W (@) = 273N @) (2i) 2z € RN i = 1,2, 3.
Now the weighted Hardy space is defined by the following

Definition. Let 0 < p < oo and w € AL (RY). The weighted flag Hardy space HY. ,(R")
is defined by
H ,(RY) = {f € Sx(RY) : g(f) € Li,(RY)}

with quasi-norm ||f]|H%w(RN) = ”g]:(f)HLﬁ)(RN).

To see that the definition of H%w is independent of the choice of {1}, we will prove
the following

Theorem 1.1. Let 0 < p < oo and w € AL(RY). Suppose that {5}, {ps} satisfy
conditions (1.3) and (1.4). Then

[£X 3 o stomiin g o~ {3 oo stanitnal ™|

JEZ3 RERL JEZ3 RER L

Q

Li,(RN)
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Remark 1.1. As mentioned before, it was shown in [NRS] that flag kernels form a subclass
of product kernels. Therefore, singular integrals with flag kernels are bounded automati-
cally on the weighted product Hardy spaces H? (R™ x R™ x R"3), when w is a product A
weight (see [DHLW]). However, by Proposition 5.1, the flag weight is not necessarily a
product weight, so our theory of weighted flag Hardy spaces does not fall under the scope
of product theory. Moreover, even if w(x) = 1, flag Hardy spaces are strictly larger than
product Hardy spaces. Nevertheless, we will prove, in Theorem 1.4 below, that singular
integrals with flag kernels are bounded on these large spaces H %w(]RN ). This, indeed, was
the main motivation to develop the weighted Hardy spaces theory.

Remark 1.2. If 1 < p < oo and w € AJ(RY), then, by a result in [W2] and a similar
argument to the proof of Theorem 1.1, the two spaces H% ,(RY) and L% (RY) coincide
with equivalent norms. However, if p > 1 there is an w ¢ A, such that H %w # [P In
this regard, we would like to refer the reader to the work of Stréomberg and Wheeden
[SW1]. Indeed, if u(z) = |g(x)[Pw(z) where g(z) is a polynomial and w(x) satisfies the
Muckenhoupt A,, condition, they proved that H? and L can be identified when all the
zeros of q(z) are real and that otherwise HP can be identified with a certain proper
subspace of LP. Similar results in product spaces are obtained in [SW2].

To study the dual of H%w(RN ), we now introduce the following weighted generalized
Carleson measure spaces CMO% | (RY).

Definition. Let 0 < p < 1, w € AL (RY). Suppose that {¢;} satisfies (1.3) and (1.4).
We say that f € S(RY) belongs to CM O (RY) if

R 1/2
[ flleaor., @y == sup { = > Z il |1/JJ*f($R)|} < o0.
’ open QCRN JET? Rem)
RCa.

Note that the structure associated with a flag is involved in CM O, spaces. To see
that the weighted Carleson measure space C M Ol}’w is well defined, we need the following

Theorem 1.2. Let w € AZ (RY). Suppose that {1;}, {0} satisfy (1.3) and (1.4). Then,
for f € SE(RY),

sup { )2 1 Z Z ‘R| |¢J*f($R)| }1/2

open 2CRY Jezd RERJ
RCQ

’R‘ 1/2

~  sup { 2122 e Sl

RCQ
The duality between H’ ,, and CMO% , can be stated as follows.

Theorem 1.3. Let 0 < p < 1. Then (H% , (RY))* = CMO% (RY). More pre-
cisely, if g € C’MO’}’U}(RN), the mapping €, given by L,(f) = (f.g), defined initially
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for [ € Sx(RY), extends to a continuous linear functional on HY% (RN) with ||fy]] <
||g||C’MO’]’_.7w(RN)'

Conversely, for every £ € (HY ,(RY))*, there exists g € CMOY% (RY) so that £ =
with ||glleaon , S 1.

Fw

In order to state the boundedness results for singular integrals with flag kernels on
HY ,(RY), we need to recall some definitions given in [NRS]. Following closely from
INRS], we begin with recalling the definition of a bump function. A k-normalized bump
function on RY is a C* function supported on the unit ball with C* norm bounded by 1.
As pointed out in [NRS], the definitions given below are independent of the choices of k,
and thus we will simply refer to “normalized bump function” without specifying k.

In this paper, we will consider the singular integrals with the following flag kernels. See
[NRSW] for this definition on homogeneous groups.

Definition. A flag kernel is a distribution K on RY which coincides with a C* function
away from the coordinate subspace x; = 0 and satisfies

(i) (differential inequalities) For each a = (v, o, a3) € Z3,

1051052052 KC(@)| S Jara] ™™ M (] + Jaa )72 7102 (| + [ + Javs]) oo

Tyl T2 T3

for x; # 0;
(ii) (cancellation conditions)
(a) Given normalized bump functions v, = 1,2,3, on R™ and any scaling pa-
rameter r > 0, define a distribution Ky, , by setting

(1.5) (Kyirr ) = (K, (¥i)r © @)
for any test function ¢ € S(RV~"). Then the distributions Ky, , satisfy the

differential inequalities

|8§58§§K¢17T(x2,x3)| 5 |Q;2|*"2*\042|<|x2‘ + ‘xgl)fnsﬂas\’
002 053 Koy (w1, 3) | S Ja |7 714 (|| 4 [ass]) 710,
B e AR )

|3a13a2/C¢3’r ([L’l, 5(32)

x1 “xo
(b) For any bump functions ¢; on R¥=" and any parameters r = (r,73), we
define the distributions Ky, . by (1.5). Then the distributions Ky, ,,i = 1,2, 3,
are one-parameter kernels and satisfy
|00 K g, ()| S a1,

(c) For any bump function ¢ on RY and r > 0, we have

(g S 1.

Moreover, the corresponding constants that appear in these differential inequalities
are independent of r, 71,7, and depend only on a.



A flag singular integral Tx is of the form T'=(f) = K * f, where K is a flag kernel on
RY defined as above.

A typical example of flag kernel adapted to the flag F, {(0,0,0)} < {(0,0,2)} C
{(0,y,2)} CR3 is
sgn(y) sgn(z)
z/72 + Y222 + y? + 22

(see [NRS]).

The main results in this paper are the following boundedness for flag singular integrals
on A% ,(RY) and CMO%  (RY)

Theorem 1.4. Let 0 < p < oo and w € AZ (RYN). Then the flag singular integral operator
T'r 1s bounded on Hff’w(RN ). Moreover, there exists a constant C, such that

I TF(N) ez, @y < Collfllz @)

Remark 1.3. As a consequence of Theorem 1.4 and Remark 1.2, we can obtain the bound-
edness of flag singular integrals on the weighted Lebesgue spaces; that is,

ITe(Dllgen) < Collflpen,  for 1<p<ooand we AF(RY).

The following result gives a general principle on the H %w(RN ) — LP (RY) boundedness
of operators.

Theorem 1.5. Suppose w € AL (RY) and 0 < p < 1. For any sublinear operator T which
is bounded on both L*(RN) and H% (RY), then T is bounded from HY.  (RY) to Lk (RY).
As a consequence, the flag singular integral operator Trx is bounded from Hﬁ’_-’w(]RN) to

L7 (RY).

The CM O, (RY) boundeness of flag singular integrals is the following

Theorem 1.6. Let T'x be a singular integral with flag kernel. For 0 < p < 1 and
w € AL(RY), Tr estends uniquely to a bounded operator on CMOY (RY). Moreover,
there exists a constant C' such that

IT=(fllemor ,@yy < Cllfllermor. , @y)-

Note that CMOf ,(RY) = BMOg,(RY), the dual of Hx , (R"). Thus, Theorem 1.6
provides the endpoint estimate for singular integrals with flag kernels on BM Oz ,,(RY).

Our last main results are the Calderén-Zygmund decomposition and interpolation for
HY ..

Theorem 1.7. Let w € AL (RY), py € (0,1] and p; < p < py < oo. Given f € Hy  (RY)
and a > 0, we have the decomposition f = g+b, where g € H (RY) and b € HY ,(RV)

with g/l @wy S 0" F I | @y and [0 gry S @™ Pl F Iz | @)
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We would like to point out that the above result was first proved by Chang and Fef-
ferman in [CF2] for the product Hardy space H'. As an application of Theorem 1.7, we
immediately have the following interpolation of operators.

Theorem 1.8. Let w € AZ(RY) and 0 < p; < pa < oo. If T is a sublinear operator
bounded from HY ,(RY) to LEHRY) and bounded from H (RY) to LE2(RY), then T is
bounded from HY  (RY) to LE(R™N) for all p € (p1,p2). Similarly, if T is bounded both
on HZ (RY) and HP (RN), then T is bounded on HY. ,(RYN) for all p € (p1,p2).

Throughout the paper, for x = (r1,79,23) € R™ x R™ x R™ let 2! = z € RM
22 = (12,73) € RM and 2% = x3 € R™. For J = (1, jo, j3) € Zs3, we write j! = J € Z3,
7% = (jo,J3) € Z* and j* = j3 € Z. Let a A b = min{a, b}.

This paper is organized as follows. In the next section, we establish the weighted
theory of flag Hardy spaces and Carleson measure spaces. The boundedness of flag sin-
gular integrals on these spaces are proved in Section 3. Section 4 is devoted to the
Calderén-Zygmund decomposition and interpolation in these spaces. Finally, in section
5, we give some examples/conterexamples to clarify the relationships among the classes
of flag weights, classical weights and product weights.

2. WEIGHTED HARDY SPACES, CARLESON MEASURE SPACES AND DUAL THEOREM

The main purpose of this section is to prove Theorems 1.1, 1.2 and 1.3.

To show Theorem 1.1, we need the following discrete Calderdn reproducing formula.
Theorem 2.1. Suppose that {1;} satisfy (1.3) and (1.4). Then
21) fla) =D 27y (x =27 0wy = f270) =Y > [Rlvs(z — zr)s * f(zR),

JEZ3 LeZ’ JEZ? RERL
where 270 = (29141, 201V320, 211VR2Vis(3) = xp denotes the left-lower corner of R, 27 =
gnmiH(Vi2)na(iVi2VisIns g the measure of R € R%, and the series converges in L*(RY),
Sr(RY) and S%(RY).

Proof. The proof of the convergence of the series in L? is similar to the classical case. By
Fourier transform, f = >, ;31 * ¢, % f with the series convergent in L*(R"). Similar
to the method used in [FJW], set g = ¢y * f and h = ¢;. For £ € RY, the Fourier
transforms of g and h are respectively given by

~

9(&1,6,8) = ¢ )(27¢y, 2j1§2,2ﬁ§3)¢ (2]252,23253)¢(3 (272€3) [ (€1, &2, €3),
R4, 6, 65) = D (20, 27,27 6,) F0) 26y, 26) 10 (27 )

Note that the Fourier transforms of g and h are both compactly supported in

= {f e RV : |&y] <277, |&] <279V &) < 2‘j1Vj2Vj37r},
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Now we first expand g in a Fourier series on the rectangle R;

Se) Jn -N (¢! z‘[(QJZ)f’]d/ —i[(27¢)-€]
36 = Y2 mem ([ ae) @ 0<ia)e

0ez3 J
and then replace R; by R¥ since ’j is supported in R;. We obtain

ZQJn 'L[ (27¢)- 5]

Lez3
Multiplying both sides by 1(¢) and noting h(€)e~(2"0€ = [h(- — 270)]"(€) yield
(g% h)(z) =Y _2/"g(2"O)h(x — 270).
ez?
Substituting g by ¥ ; * f and h by ¢, into the above identity gives the discrete Calderon
reproducing formula (2.1) and the convergence in L*(RY).

To finish the proof, we only need to show that the series in (2.1) converges in Sx(RY);
the convergence in S%(RY) then follows from a standard duality argument. The key for
doing this is the almost orthogonal estimates: for any L, M > 0 and f € Sr(RY),

29 % )| < o-Uanl+ljal+liDl__ ~
Assume that (2.2) holds for the moment. Then
72w - 20+ £(270)
Le73
e g 1
< 9= (linl+lg2l+lisD L o) : _ _
~ Z (1 + |2J1£1| + |231V32g2| + |2J1V32\/J3€3|)M

LeZ3
1

< : S ——
(1 + |2y — 29001 | + |zg — 201Vi2fy| + |xg — 201Vi2Visfy| )M
< 2—(|j1|+\j2|+|j3\)L'(1 + |:p|)_M for some L' > 0,

which further implies that
S D 2w =27 0w, f270) -0 in SF(RY)

|j1|7|j2|7|j3|>kéez3
as k — +o0.

It remains to verify (2.2). We note that f(x1,2,) € Soo(R™), the space of Schwartz
functions with all moments vanishing, due to f € Sz(R"). Thus for any fixed (z1,xs),
by the almost orthogonality estimate on R"3,

5 f@)] S 27 4 [a]) M
which implies
(23) 8 % (@) S 27l A (1 . [of) =
Using the fact f(x1,-, ) € So(R™3) and arguing as above, we have
2.4) 3 # Ja)] S 2N (1
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We finally use f € S (RY) to get
(2.5) 3+ F(@)] S 27EQHBIN (1 . [g]) M
By choosing L > 100M in (2.3) — (2.5) and taking the geometric mean, (2.2) follows. [

The following almost orthogonality estimate will be frequently used in the subsequent
part of this section. The proof follows directly from the one-parameter orthogonality
estimate (cf. [HLLL, page 2840]). See also [NRSW] for similar estimates on homogeneous
groups.

Lemma 2.2. Given positive integers L and M, there exists a constant C' = C(L, M) > 0
such that

3 max 20kVik) M
1<k<i

(2.6) [y *@p(x)| < 9~ (=i [+li2—dbl+lis =75 L

n;+M?’
i=1 ( max 2+Vik + |2, |)
1<k<i

where {1;} and {oy} satisfy (1.3).

Remark 2.1. The above Lemma 2.2 also holds if the functions {1/} and {¢®},i =1,2,3,
satisfy moment conditions up to order M, (see Theorem 3.3 for choosing such an Mj):
PO (2 (%) da’ = / oDy () idy' =0 for all multi-indices |ay|, |5;| < M.
RN: RN:
In such a case, almost orthogonality estimates hold for all positive integers M and L <
My + 1.

The following the maximal function estimate is also frequently needed.

Lemma 2.3. Let J € 2%, R = Q1 X Q2 x Q3 € R% and M > 2N. Then, for any x,T € R

and 6 € (N+M,1], we have

> R " )WM} l9(a!)

w

en "7 (s 200090 + |2 — ]
SCN{HQ?’"M Dyt {M;[( 3 |g(x’)|2XR,)%]( Vovaer,
= R'eRY

where Cy s a constant depending only on N.

Proof. The proof of this lemma is similar to the classical case. Fort=1,2,3 and r; € Z,
set
Af = {Q'- |z — )] < max Q(WJk)}

t 1<k<i

4 z; — .
Al = {Q; g | I ’|., < 2}

and

max 2(]k\/Jk) -
1<k<i
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For any fixed r = (71,79, 73) with each r; > 0, write

E, = {(w17w2,w3) € R™ x R™ x R™ : |w; — 7| < max {27120xViD+11 " — 1,2,3}

1<k<s

Then R C E, and, for each R’ € o, := A} x A2 x A

», B C E,. Obviously, E, € Rr
and |E | < CH?L maxi<k<; 2ni{7‘i+(jk‘\/]k)}_

For N+M < 6 <1 and for any = € R, (2.7) is majorized by
—ri(M+n;) —ni(JxViy) d
>[Iz s 2ol (3 o)
reNs =1 T R ety
3 1
= ri(M+n;) n; (Ji Vi) 1i—1% / 5
Z[HQ (max 2 ’“)}IRI |E 0 (‘E| : > la@)Pxm( )dy>
reNs =1 T R'ed
3 o 3 4 (5 1/6-1 5 1
< < Z HQ—M( - m‘)) (H[Q ni(Ji=Ji) \/ 1]) (M]:( Z ’g(x/)‘ XR’)(x)> .
reNs i=1 i=1 RIeRY

Since M > 2N, the last term is then bounded by

’ 3ni(ji—3!) 1/6—-1 NS 1/6
o(TIer v i)™ (Ma( Y lg@)Pxm)(@))
=1 R’ER‘;_—I
This proves Lemma 2.3. U

For i = 1,2,3, write z = (z/,2%) € RN x RM. We say that w € AV (RY) if w(z', -)
is a classical A,(RM:) weight uniformly in 27; that is,

1 — N (L - N
sup <—/w(xl,xl)dxl> <—/w(ml,x’)1/(”1)dz1) < 00.
_QcRrNi _ ‘Q| Q |Q’ Q

wierN—N;
Let M; denote the Hardy-Littlewood maximal operator on R™:. The lifted maximal
operator M; on RY was introduced in [NRSW] by

M, == dgn-n; @ M,
where dgn-n, is the Dirac mass at 0 € RV,

The following result was proved in [W2].

Lemma 2.4. Let 1 < p < 0o and w be a nonnegative measurable function on RY. The
following statements are equivalent:

(i) w e AJ(RN);

(if) w A(l) N AP N AP (RN,
(iii) Mj 0 My o M, is bounded on LP P (RY);
(iv) Mz is bounded on LE(RY).
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Using Lemma 2.4 and applying Rubio de Francias’s extropolation (or the argument in
[AJ]), one can easily obtain the following weighted Fefferman-Stein vector-valued inequal-

ity.
Corollary 2.5. Let w € AJ(RY) and {f;}jez € LE((7). Then, for all 1 < p,q < oo,

| MDD @ <€ [ 1@ iw (e

where | - |;a means the classical (7-norm.

We now are ready to show Theorem 1.1.

Proof of Theorem 1.1. Let f € S(RY) and w € AL (RY). We denote zr = 27¢ and
= 2/'¢'. Applying Theorem 2.1, Lemma 2.2 with M > N[((qw/p) — 1) V 2] and
L— 10M and Lemma 2.3, we get that, for N+M <0 < (L A1) and for any x € R,

(W * [)(zR)] ‘Z > R xpp(ar — xr)es * flam)

J'€L3 R e RI’
< Z 917141 |+1j2—d5|+1is—i5)) L
J'er?
3 P NAYM
max; <p<; 20k
< > IRITT e 1o+ flam)
o o (maxg < 20rViK) + |z, — T |)mitM
PR s 5
< Z 9= (i =i [+li2—d5|+lis =35 L {M}-[( Z oy * flzp)] XR’)Q}( )} :
J'ez? R/ER:}__’

where I/ = L — 3N(1/6 — 1) > TM > 0.

Squaring both sides, then multiplying y, summing over all J € Z3 and R € R¥%, and
. . 5 . . . N N
finally applying Holder’s inequality, we obtain that, for all x € R and 73 < 0 <
(&A1),

Z Z [0 * f(zr) xR

J€EZ? RER %
< Z { Z 2—(|j1—j1|+|j2—jg|+|j3—jg|>L'}{ o= (1 =31 [+lj2—d4l+s gD L/
Jez3  J'ezs J'er?
b 3
AMA( X Too# flan)un) @]}
R'eRY
s 3
S {Mf[( > Iw*f(wa)IQXR')Q]@)} ’
J'er? R'eRY

where we used the estimates

E 9—(lj1=d1l+li2 =351 +1is—d51) L/ <C and § 9= (51 =1 [+1d2 =75 13 —5]) L/ <C
J'ez3 JeZ3
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in the last inequality. Note that (2Ap)/d > q,, implies w € A;T/ s(RY). Applying Corollary
2.5 with L5/’ (¢*/9) yields

H{ Z Z WJ*f(xR)FXR}l/Q LY, (RN) S H{ Z Z \SOJ*f(xR)FXR}l/Q

3 J 3 J
JEZ3 RERYL JEL? RERL

LE,RN)

The converse inequality follows by symmetry. U

As a consequence of Theorem 1.1, we obtain a density result of H%w which will be
useful to show the H%w — LP boundedness of operators, the weak density of C'M O%w
and the Calderén-Zygmund decomposition for H %w.

Corollary 2.6. Let 0 < p < 0o and w € AL (RY). Then Sx(RY) is dense in H% ,(RY)
and, in consequence, L*(RN) N HY. (RY) is dense in HY  (RY).

Proof. Let f € HY  (RY). For any fixed L > 0, denote
EL = {<‘]7 R) : |j1’7 |j2|7 |j3| S L7R C B(Oa L)}

and
ful@) = [Rlgs(x —zr)vy * f(zr).
(J,R)EEL
Since ¥; € Sz(RY), it is obvious that f; € Sr(RY). Repeating the proof of Theorem
1.1, we conclude that ||fL||H§__’w(RN) < ||f||H§__’w(RN).

To see that fr tends to f in H%w(RN ), we use the discrete Calderén reproducing

formula to write

lgr(f = f)@E =" D | 0 IRls # dslan — s + flan)

J'ez3 R’ERJ/ (J,R)EES

XR'( )-

Now repeating the same argument as in the proof of Theorem 1.1 again, we get

Y
L (RN)

1/2
lg7(f = filll o @yy S H{ > = f(xR)IQXR}
J

(J,R)EES

where the last term tends to 0 as L goes to infinity. This implies that f; tends to f in
HY% ,(RY) norm and hence the proof is finished. O

We follow the classical case (see [St, GR]) to get the following lemma.

Lemma 2.7. Suppose w € AL (R™) and q > q,. There erist 0 < § < 1 < q < oo such
that, for all flag rectangles R and all measurable subsets A of R,

(i) =5 = (i)

In particular, the measure w(x)dx is doubling with respect to flag rectangles.
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Lemma 2.8. Let w € AZ (RY). Then, for all flag rectangles R and R' and for q > qu,

Qi \Q'l) ( [2qQ; — 2q| )"’q
iooviey)

R/
<
s <1 (6 v o)
IVUQ))+ g, —q])/0(Q:).

Proof. Observe that Q) C A;Q;, i = 1,2,3, where A; = C(¢(Q;)
This implies R’ C R, where R = C[(4,Q1) x (A2Q2) x (A3Q3)]. By Lemma 2.7, for any

q > Qu,
w(R) _ { } H{ (Qi) vV LQ ()Qt)m—x@/!

-

w(ft)
w(R) ~ w(R) ™

I/\

2, — 2q] rq
Q)

|

S 1+
<[] [+ nayeiio
Hence the proof is concluded 0]
We now show Theorem 1.2
Proof of Theorem 1.2. For R € R% and R’ € R, set
Sk =l flxr)l?  and  Tw = |py* f(zp)]*.
Theorem 2.1 and Lemma 2.2 yield
1
Sp = ‘ S R er x flar)by = or(er — o)
J'E€L® RreRy
< Z Z 2*(\1'171'1|+|jzfj§\+\jsfjé|)NL|R/|
J'€L? RIeRY

3 max 20kVi)M

H (J:VEKZ . +M] o * f(xr)]

oy (e 20590 - [, — g™

<Y Y rrmpe e,
J'E€L RIeRY
where
/N . 7 /
r(RR):=]] Qzl} and P(R,R):=]] rara AT
=l ( o Q(jkvjp)
1<k<i

i

i=1

Squaring both sides, multiplying by |R|>/w(R), adding up all the terms over J € Z?
Re Rz R CQand applying Holder’s inequality, we obtain
2 -1
e 2 [APu() 5]

sup{
ReR%L
Rcq
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<sup{ 7 /p - > |RPuw( [ > r(R.R)P(R, R’)]

ReR% R’GRdf
RCQ

x [ Y (R, R)P(R, R’)TR/]}

R'eRL

<sup{ 2/p -S> IRPw(R) r(R, R)P(R, R)Tw }.

ReRL R'eRL
RcS

Here and hereafter, we use ) rere to denote Y oJezs O Rrery and similarly for > ReRd-
Applying Lemma 2.8, we get

sun{ 2/p12|R|2 )"'Sn}

ReR%
RCS

<sup{ 2/p Y S IR Pw(R) TR, R’)P(R,R’))TR,}.

ReRL R'eRL
RCS

Here the definition of 7(R, R') and P(R, R') are defined as r(R, R') and P(R,R') with
smaller L and M. Since L and M can be chosen arbitrarily large, in what follows, we still
use (R, R') and P(R, R') to denote 7(R, R') and P(R, R’), respectively.

To finish the proof, it suffices to show that the right hand side of (2.8) is bounded by
1
CSllp {W Z ’RIPU}(R/)ilTR/}.

a Sw(Q werd

R'CcQ

(2.8)

We point out that r(R, R') and P(R, R') characterize the geometrical properties between
two flag rectangles R and R’. Namely, when the difference of the sizes of R and R’
grows bigger, r(R, R’') becomes smaller; when the distance between R and R’ gets larger,
P(R, R') becomes smaller. The following argument is quite geometric. To be precise, we
shall first decompose the set of dyadic flag rectangles { R’} into annuli according to the
distance of R and R’. Next, in each annuli, precise estimates are given by considering
the difference of the sizes of R and R’. Finally, add up all the estimates in each annuli to
finish the proof.

We now turn to details. For J = (ji, ja, j3) € Z* and R € R%, denote
Ry =Ry j,5n = (2'Q1) x (2MV2Qy) x (21V2VisQy)  QF = itdzids = U 3R,.
RCQ
For any flag rectangle R C 2 and J = (j1, jo2, j3) € Zi, let
o00(R) ={R : 3R, N3R # @},
A 00(R) = {R : 3R, oy N3R # @ and 3R, _, ,,N3R = &},
jp0(R) = {R': 3R}, ;N3R # @ and 3R ;,_, ,N3R = o},

0,52,
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H04s(R) = {R : 3Ry, ;, N 3R # & and R’ b0 N3R =2},
Ay po(R)={R :3R, , ;N3R#@, 3R, _,, yN3R=0o and 3R, ,_,,N3R =2},
), 04,(R) = {R : 3R, ,. N3R# @, 3R, ,, N3R=@ and 3R} ., | N3R =2},
Ay sns(R) = {R :3R), . N3R+@, 3Ry, | . N3R=oand 3R),, ., N3R =2},
Ay rgs(R) ={R 3R} ;, . N3R# @, 3R, ,, N33R =2,
3R, 1, N3R=a and 3R} ; . N3R=a}.

Given a dyadic flag rectangle R C €, for each flag rectangle R', there exist J € N3 such
that R’ € o/;(R) and thus R%: = Uy @ (R). Hence,

7_1 Z Z |R/|2 R/

[ ReRL R'eRL
RCO

,_12 2

[ ReRL R'€s,0,0(R)

(R, RP(R, R)Tx

|R'Pw(R)'r(R, R)P(R, R\Tg

RCSQ
Y S>> IRPw®) (R, R)P(R, R) Ty
J1E€Zy [w( Rer% R'€dj, 0,0(R)
RCQ
+ Z o ST Y IRPw(R) (R, R)P(R, R)Tw
JzGZ+ ReR% R'€4,jy,0(R)
RCQ
+ Z — > Y IRPw®) (R, R)P(R,R)Tr
13€Z+ ReRdF R/€dy 0,55 (R)
RCQ
+ Z — > > |RPw(R)'r(R,R)P(R,R)Tx
J1,J2€Z+ ] ReRd R'ed j,0(R)
RCQ
+ Z — > > |RPw(R)'r(R,R)P(R,R)Tx
J J2€Z+ ReRd R'ed 0,45 (R)
RCQ
+ Z — > > |RPw(R)'r(R R)P(R,R)Tx
J1 J3€Z+ RERd R'ed 0,45 (R)

o

J1,2,J3€Z+

[W(Q o

RCQ

|R'Pw(R)'r(R, R)P(R, R Tg

ReRL R'€4) jy .5 (R)
RCO

=1+ 1T+ I1IT+IV+V+VI+VII+VIIIL

In the sequel, we always assume R, R’ € R% for simplicity. To estimate I, we denote

%07070 = {R/ .

3R N QY00 £ &} For any R & PBpop, we have 3R N Q%0 = &, This

implies that 3R’ N 3R = @ for every R C Q and thus R’ ¢ % (R). This shows that
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Urca,00(R) C «%0 0,0- Hence

I< 2_1 > > |RPw(®) (R, R)P(R,R)Tg.
[ P R'€%0,0,0 . R:RCQ
R'edy 0,0(R)

For each integer h > 1, let .#,"° = {R' € B0, |3R N Q00| > 1/2"3R'|}, 2" =

FPONZ and Q)00 = UR/GQ}?,O,O R'. Observe that %Booo = Up>12y"° and that
P(R,R') < 1 for any pair of rectangles (R, R’) with R’ € HByoo and R € a0(R).
Thus

(2.9) < ;_12 > > IRPw(®R) (R, R)Th.

R>1 0,0,0  R:RCQ
Ry, R'eslp ,0(R)

We now estimate > mrco, (R, R') for each h € Z, and R C 2)°°. Note that

R'ealy 0,0(R)

R' € 00(R) implies 3R N 3R’ # @. Using an idea of Chang and R. Fefferman [CF1],

for each R, we consider the following eight cases:

Case 1. || = |Q1l, Q5] = [Qal, [Qs] = [Qs];
Case 2. |Qy| = |Q1], |Q5] = |Qal, [Q5] < [Qsl;
Case 3. |Qy| = |@1], |Q5] < [Qal, Q3] = [Qs];
Case 4. |@Q| < |Qu], Q5] = [Qal, [Q3] = [Qs];
Case 5. || = |Q1l,[Q5] < [Qal, Q5] < |Qs];
Case 6. Q1] <@, Q5] = |Q2], Q5] < |Qs];
Case 7. |Q| < |Qu], Q5] < [Q2l, Q3] = |Qs];
Case 8. Q1] <@, [Q2] <@, [Q5] < 1@s]-

We first consider Case 1. In this case, |[R| < [3RN3R/| < [3R' N QOO0 < 211|3R) <
22N+1=h| Rl which implies that |R/| = 2"~ 172N*9|R| for some integer § > 0. For each
fixed @, the number of such R’s must be less than C(6 + h)N2*" Consequently,

> rRR)<CY <29—1+,1)L(0 + h)NIh < 0o

ReCase 1 >0

where L/ =L — (N +1) > 0.

We next deal with Case 2. We have [3R'||Q; x Q»|/(22V|Q} x @Q4]) < [3BRN3R| <
21="|3R'|, which implies that |@Q} x Q4| = 2"9=172N|Q; x Q,| for some integer § > 0. For
each fixed 0, the number of such Q; x Q5’s must be less than C(6 + )Y - 207" Similarly,
Q3] = 2}Q4| for some A > 0. For each )\, 3Q3 N 3Q% # @ implies that the number of
such Q3’s is less than 5. It follows that

N ob+h hL/
SRR ENS () @ n o
ReCase 2 0>0 A\>0

Cases 3-7 can be handled similarly and the details are left to the reader. We finally
handle Case 8. We have |R'| < [3BRN3R| < [3R' N QOO0 < 21-0|3R| < 21-h+2N| R/,
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which implies h < 2N + 1. Since in this case |R'| < |R|, we have |R| = 2°|R/| for some
integer 6 > 0. For each fixed 6, the number of such R’s must be less than 5. Therefore,

> rRR)SY (%)L <1

ReCase 3 6>0

Now we rewrite the right hand side of (2.9) as

7—12 Z ( Z +- Z > (R, R) “Z;)TR =L+ -+ s

h>1 R’CQO 0,0 \ReCase 1 ReCase 8

Note that for x € Q%O’O, there exists a dyadic flag rectangle R C Q%O’O such that = € R.
Therefore Mx(xqo00)(z) > [3R' N Q%00 /|3R'| > 27" For q € (qu, pL/(2 —p)), we apply
the L4 (RY) boundedness of Mz and Lemma 2.7 to obtain

w(@y™") < w({z s Mz(xgooo)(z) = 27"}) S 2Mw(Q000) < 27w(Q).

This, together with the estimates in Cases 1-7, yields

I +- +I7N[(1 222“'|R|

2
Q)]» h>1 g0 00

1 22 hL’ QOOO)] 1 Z |R/|2 T
_1 w(R') R

2 2_
w()]r™ = [w(Q%O’O)]” ' RIcQl00
1 _hT 2_ 2_ 1 |R/|2
<—Z2 M) w ()] sup ———5— > Tr
@) i o [w@] " g )
1 ‘R/‘Q
Ssup_— —TR7
a [w@)r ! R%w(R’)

where in the last inequality we have used ), 2_’ZL/(2‘1h)%71 < 1 for sufficiently large L'.
For I, note that in this case, h must be less than 2N + 1. Hence,

LI ol |R'|2

2_
[w(Q)]7 ' 1<h<2N+1 R,CQOOO

<L % [w(ﬂ%mnﬁ*; >

2_ 2_
[w(Q)]» ' 1<h<2N+1 [w(Q%O’O)]” ! ReaD0o w
1 2 2 1 IR|?
S——= >, ") w@P sup———= > Tr
[w( )] S a [w@)r! P w(R')
1 |R/|2
5 sup — 2 TR
a [w@)]r R,me(R’>
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Combining the estimates above yields

1 ‘R/‘Q
I< C’s%p —[ (ﬁ)]7—1 Z (R’)TR'

We now estimate VIII. For J = (j1, j2,j3) with ji, ja, 3 > 1, set
Ay = Qjigoygs = T 2 71 Z Z |R,|2 R, (R7 R,)P(R’ R/)TR’
p RCQ R'ed;(R)

and B, := {R' : R, n QY00 +£ @}. For any R’ ¢ %;, we have R, N Q%0 = &. Thus
for every R C €, it yields R, N 3R = @, which implies R’ ¢ </;(R) and therefore
Urcaes(R) C AB;. Hence,

“ S S Y IRPw(R) (R R)P(R, R)Ty.
P R'e#; R:RCQ,
R’Ea{(R)

Let Z/ ={R € %B;: |R, N Q"0 > 1)2"R}|} for h >0, @ = F/\ F;/ | for h > 1,
and 2§ = @. Denote Qj = Uregy R for h > 1. Note that % = >, 2. Thus,

(2.10) ay < 7_122 > |RPw(R) (R, R)P(R, )Ty

LR RS

Also note that R’ € @7;(R) implies |zq, — xq/| > [2m®<k<idk0(Q))] V £(Q;) for i = 1,2, 3.
Similar to the proof for I, we now consider the following eight cases:

Case 1. 2@y > |Qul, [27V72Q4] > [Qal, 1277272 Q5] > |Qs];
Case 2. [20QY] > Q1. [2772Q4| > 1@, [2772V 52 Q5] < |Qs);
Case 5. [20Qy] > Q1. [2772Qy| < |Qal, [2772¥5 Q5] > |Qs);
Case 4. [27Q| <|Qul,[27772Q5] = [Qal, [27772¥ Q5] > |@s];
Case 5. |20Qy = |Qul, [2772Qy] < 1@, [2772¥72 Q5] < |Qs);
Case 6. [27Q4] < |Qul, [272Q5] = |Qaf, [27M72Y 7 Q5] < |Qs];
Case 7. [27Q4] <|Qul, [2772Q4] < |Qal, [2772Y2 Q5] = |Qs]:
Case 8. [27Q4| < [Qul,[27772Q5] < |Q, [27772¥72 Q5] < |Qs].

Rewrite the right hand side of (2.10) as

———— > > [RJPw(R) 1TR/< Yot ) ) (R,R)P(R, R

p h>1 RIGQJ ReCase 1 ReCase 8

=agy et ags.

We first estimate a;5. For each h > 1 and R’ € @,{ , we consider

(2.11) > r(R.R)P(RR).

R:RCQ
R'cof j(R)
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Observe that |Qq x [2/1V72Q)] x [271Vi2Vis Q]| < |3R; N 3R|. Thus
Q1]
13- 211Qy
which yields 2/71|Q,| < 3m271™|Q)| < 201+2m|Q)|. We now consider two subcases.
Subcase 5.1: |Q}| > |Q1]. In this subcase, since 2"~ 1=1m1|Q,| < |Q}|, we have |Q}| ~

oh=1=jim+k|Q, | for some integer k > 0. And for each fixed k, the number of such Q;’s
must be < (k + h)N2k+h,

Subcase 5.2: |Q4| < |Q1]. In this subcase, we have |Q}| < |Q1] < [272Q}|. So 2Y4(Q)) =
0(Q) for some positive integer [ satisfying 1 < [ < j;. For each [, the number of @Q’s
must be < 1. Moreover, 2121 |Q! | = 2/1|Q,| < 2U1+2m|Q!|. Tt follows that b < 3ny7;.
Note also that

1
3R)| < 3R, N3R| < 3R, N Q| < ——[3R)],

2

20 — gyl _ |rar — 2o €(Q7) i1 1

((Q1) (@) Q)

In Case 5, we also have |(271Y72Q}) x (211V72V53QL)| < |Qq X @3], which implies

2(j1ij)n2+(j1\/j2\/j3)n3+ff|Q’2 % le = |Q2 x Qs

for some k > 0. And for each fixed x, the number of such Q5 x Q3’s must be < 1. These
considerations imply that, for M > nqL,

> r(R.R)P(RR)

Subcase 5.1
\er)L (|@; x @g|)L ( |2, — wQ;r><"l+M>
2 (\@ar Q@) '@

Subcase 5.1
—(no+M —(n3+M
" <1+ |zq, —J:Q'2|) (D) (1+ |2qs —ng|) (ratA0)
Qo) 0(Qs)
< Z (k + h)N2/€+h2*[h+k*j1n1}L2*[(lejz)n2+(j1ijVjs)n3+H]L2*(n1+M)j1
k,k>0

< 9~ ML=N=1)9=j1(M=n1L)9—[(j1Vj2)na+(j1VjaVis)ns] L

and that, for L,

— r@a|>L<\@;x@gr>L< M)(’“”@
Z T(R,R)P(R,R) = Z (’Ql’ ‘QZ X ng L+ K(Qﬂ

Subcase 5.2 Subcase 5.2
—(no+M —(ns+M
5 <1+ 20, —ng|> (i) <1+ |z0, —ng|> (et
£(Q2) 0(Qs)
J1
< Z Z 9—mlLo—[(51Vi2)n2+(j1VieVis)ns+r|Lo—M(j1—1)
=1 k>0

< 9—irLg=[(j1Vj2)n2+(j1Vj2Vis)nslL
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Now we write

e ———— > > [R]w(R) 1TR,><< oo+ > ) (R, R)P(R, R
h>1 R’EQJ Subcase 5.1 Subcase 5.2
=ay51tag5.2.
Note that if z € Qf, then x € R for some dyadic flag rectangle R C ;] and therefore
M]—'(XQOOO)(I) > R, N QYO /|R)| > 27" Now we take L > miqu(5 — 1) + 2N, ¢ €

(Gw; élL(; ) ) and apply the L? boundedness of Mz and Lemma 2.7 to get
w() < w{z : Mz(xao)(z) > 27"}) < 20hw(Q%00) < 290y (Q).
Then
as51 5 1 — 22 (L—N-— 1)2 Ji[M— nlL}2 [(J1Vi2)na+(41Vi2Via) nd]L[ (QJ)]**l
w()]» ™ 4=
1
% f Z |Rl|2 R/) 1TR/
[w (Q NP mcay
< —— 22 Do—i[M—niL]g— [(11VJz)nz+(11V12VJs)n3]L[Qqh] [w(Q)]%_l
w()] h>1
1
X Slip——g—l Z ‘R/‘Q’U}(R/)_lTR/
@ W@ A
< 9= [M=n1L]g=[(j1Vj2)n2+(j1Vj2Viz)ns]L Slip_; Z |R/|2 R/) LT
a (w5
and
1 3nij1 )
ays0 < e Z 2—j1L2—[(jl\/j2)n2+(j1Vj2Vj3)7l3]L[w(Qi)];_1
w(Q)]P o
1
% f Z |R/|2 R/> 1TR’
[w( )] poay
< 1 2_12*1’1(L*(6"1Q/P))2*[(1'1V1'2)7“L2+(j1\/jz\/J'S)nS]L[w(Q)]%—l
[w()]7
1
X Sup——2,1 Z |R/|2TU(R/)_1TR/
o W@F i

5 2—j1(L—6n1Q/p))2—[(j1ij)n2+(j1Vj2Vj3)n3]L sup _1 i Z ]R’]Zw(R')_lTR/.

o [w()]r R'CQ

Combining these estimates yields that, for M > niL > anq/ D,

Z ajs < Z ajs.1+ Z GJ52<SUP @‘2 — Z |R'Pw(R) ' Tr,

Ji,J2,33>1 J1,J2,J3>1 Ji,j2,J3>1 R'CQ




23

where we have used the following estimate

> ok GiikagmGivavisks < O for Ky, ky, ks > 0.
J1,j2,j321
Using the same skills, we can estimate the other seven terms. Combining these estimates,
we obtain
virr =y (aJ71+ +aJ8) S —og N IR Pw(R) Ty

J1,52,53>1 |p R'CQ

as desired.

Similarly, the estimates of I — VII can be handled with minor modifications, and
hence the proof of Theorem 1.2 follows. 0

To show that CMO%  (RY) is the dual spaces of H% ,(RY), we introduce the multi-
parameter flag weighted sequence spaces.

Definition. Let 0 < p < 1 and w € AZ (RY). We use s? (RY) to express the collection
of all sequences {sgr} satisfying

- |srl|®
sl ey = H{JZBZ TR )’

We also use ? (RY) to denote the collection of all sequences {tg} such that

< 0Q.

Li,(RN)

1
2
It lam = sup { ZZW }<oo'
open QCRY [w(Q)] JEL? ReRY
RCQ

We will show the duality relationship between s? and c?,.

Theorem 2.9. Let 0 < p < 1. Then (s?(RY))* = & (RY). More precisely, for every
{tr} € &, (RY), the mapping ls : {sr} — >_p srtr defines a continuous linear functional
on sb,(RN) with operator norm ||ls|| < [|t|| 2 @yy. Conversely, for every £ € (sb,(RY))*,
there is a unique {tp} € & (RY) such that {(sg) =Y. 5 srtr and ||[{t}rlle <[4

Proof. We first prove c? (RY) C (s?(RM))*. Suppose that {tg} € & (RY). For {sp} €
SH(RY), let G({sr})(x) = {3 ez Cners |srPIRI " xr(x)}2. For i € Z, set Q4 = {w €
N G{srP (@) > 2}, = {z € RN : Mz(xo,)(z) > 1/2}, and %’ = {R ERr:|RN

Q| > 1/2|R|, [RNQ1| < 1/2|R|}. If 2 € R € B;, then Mx(xq,)(x) |R‘ Jr Xa: (y)dy =

|R|%| LS %, which implies

(2.12) U Rc
Re%B;

Moreover, for ¢ > g, by the L4 (RY) boundedness of Mz,
(2.13) w(€) < w(),
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and by Lemma 2.7,

w(RN (% \ Qip1))

w(R\ Q1)

(2.14) i -

Suppose {tr} € & (RY). By (2.12) —

| > sl 5| S [,

Je73 RGRJ \Qz+1 Re

<Z{Z|R|2

€L

!R\

1EL

S I{trtle > 2 w(Q

1EZL
S Htr}l

which implies the inclusion ¢ (RY) C

For the converse, we assume that ¢ € (s?(RY))*.

w(R)

Z |tR| |

S It Z[w@)ﬁ—”%{ /

lk

a9 selley, = {tr}le,
(sh, (RY))".

> <|R\’;2|i+1’>q > 2i

(2.14) and Schwarz’s inequality,

ISRIIRI Sxr(z)w (x)dx‘

|sg|?
R

XR(m)w(a:)da:}2

G{su}) @) Pul)ds

Q\ Qi1

1

{sr} s,

Then it is clear that ¢({sg}) =

> g Srtr for some {tr}. Now fix an open set 2 C RY with w(f2) < co. Let u be a measure

of R such that pu(R) =

RCQ

|B] }

Then

oo 2122\312

JEeZ3 RERJ
RCS

= |[{tr}le@u =

H{SR}llgz <1

<[l sup

I{sm 20 <1

|selw@

()] 27| R|[w(R)]
Isrtle@m ={ D0 D Isallw

3 J
JEZLS ReRY

if R C Q2 and otherwise p(R) = 0. Set

12/ R
/ (R)}'

R
1Y 3 sutalw@) -7
JEZ3 ReRjT w( )
RCQ
—2/p |R‘
U)(R) si’

where {sg} satisfies sp = 0 if R is not contained in 2. However, for such {sg}, Holder’s

inequality yields

Jsatwtey-2r- 12

{[[X 3 altwor

JeZ3 rerL
RCQ

sty (RN)

1

w(x)dx}p

[N4S)

L
/ (R)QXR( )}
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< [w(Q)]" % /Z S Jsrl2lw()E @)QXR( )w(q;)daz:}é

JEZL3 ReRL
RCQ

= [[{sr}e@um <1,

which shows |[{tg}||z®~) < [|€] and thus {tg} € & (RY). O

Now we define a lifting operator £ on S=(RY) and a projection operator T on sequence
spaces by

L(f) = {|R|7¢y % f(zr)}  for f € SERY)
and

T{tr})(2) Z Z [R|Z4p(x — 2p)tg,

JEL3 RERL
where {1} satisfies (1.3) and (1.4).
To prove Theorem 1.3, we need the following
Theorem 2.10. The lifting operator L is bounded from HY. , (RY) to sb,(R™) and bounded
from CMOY% (RY) to cb(RY). The projection operator T is bounded from st (RY) to

HY. ,(RY) and bounded from c&,(RY) to CMO%  (RN). Moreover, T o L is the identity
both on HY  (RY) and CMOY%  (RY).

Proof. The boundedness of £ from H% (RY) to sb,(RY) and from CMO%  (RY) to
 (RYN) follows directly from Definition of £ and T.

We next show that 7 is bounded from s%, (RY) to H% ,(R"). By Definition,

Ty o = [{ £ 3 1o x T onPca)

JEZ3 RERL

L ®RY)
A similar argument to the proof of Theorem 1.1 yields

Tl  [{ 5 Mol 3 i vnp )

Jer? R'eRY b
1
_ 2
S X &R}, = lsll.
J’EZ3R/eR§’ v

Finally, we prove that the operator 7T is bounded from 2 (RY) to CM O%w(RN ). Suppose
{tr} € & (RY). Then, for any open set Q C RY with w(Q) < oo,

> X g < Clu@),

JeZ? rerY
RCQ
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Therefore,

ST s TR} )P ”f')

Jez3 RERL
RCQ

=S (X S W wslan—aw)l- e IR 'f':

JEZ® rerL  J'€Z3 RGRJ/
RCQ

Repeating the same argument as in Theorem 1.2 implies

R/Z
It lenos, o s { 2_12|R\2' |

;
71 el e

The fact that 7 o £ is the identity both on H %w(]RN ) and CMO%  (RY) follows directly
from the discrete Calderon identity in Theorem 2.1. Hence the proof follows. OJ

Now, we are ready to give

Proof of Theorem 1.3. We first prove the inclusion CMO% (RY) C (H% , (RY))*. Let
g € CMO% (RY). For f € So(RY), define the mapping £y(f) := (f, g). By Theorems
2.1, 2.9 and 2.10, we obtain

L= 10 9) = (D0 D2 1Rl —ar)ies = flar).g)|

JEZ3 RCRL

=[S0 ST R # f) R« o)

JEL3 RCR)
= [(LCH), LN S TL st [1£(9) et v,
N ||f||H§_.7w(RN)HgHCMO’]’_.’w(RN)a
where we have chosen ¥(V)(—z) = ¢ (z) and 9® (—z) = @ (x). Since S, (RY) is dense

in H% (RY) (by Corollary 2.6), this implies that the mapping £,(f) = (f,g) can be
extended to a continuous linear functional on H% (RY) and ||£,]| < Cligleron.  @wvy-

Conversely, let ¢ € (HY%  (RY))* and ¢, = £oT. For {sg} € sb,(R"), Theorem 2.10

gives
[ {seD)] = 16T {srI)| < N1 ITEseD g, @vy < ClE- I{sr} s @
which implies that ¢; € (s (RY))*. Then by Theorem 2.9, there exists {tr} € & (RY)
such that £ ({sr}) = X g srtr for all {sp} € s,(RY) and [[{tp}|le,@y) < 1G] S 4] By
Theorem 2.9 again, { = o 7T o L =/, 0 L. Hence
() = t(L(f)) = (L(f), 1) = (f 9),
where g = >/ /s ZRGR} |R|% tr Y¥y(xp — x). This implies that ¢ = ¢, and, by Theorem
2.9,
l9llcaror. , wvy < Cl{ErM e @) < Cllég]l-
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This finishes the proof of Theorem 1.3. ([

3. WEIGHTED BOUNDEDNESS OF SINGULAR INTEGRALS WITH FLAG KERNELS

This section is devoted to proving the boundedness results given in Theorems 1.4,
1.5 and 1.6 for flag singular integrals. To prove Theorem 1.4, we need the following
orthogonality estimates.

Lemma 3.1. Let € S(RY) satisfy
(31) / (10('1'17 L2, .I‘g)dl‘z =0 fOT' L= 17 27 37
R

and define ©; by @ (x) = 27Imtinatisns (=g 272y 27x3). Also let 1y € S(R™)
be defined in Section 1. Then there exists € > 0 such that, for any M > 0,

3 i/
e 27 M
3.2 w0 ()] < 9—elir—dtl+liz—gbl+lia—341) [ MaxX1 <k ]
( ) ‘(-PJ wJ( )‘ ~ E maX1<k<l 2]k + ‘ZC ’)nl+M
Proof. There are 8 cases.
Case 1. jl S jiaj? S jéaj?) S ]:/’, By (31)7
1
‘SOJ * %1 ’ = ‘ / wr(u (r —u) — @D]('l)(ﬂﬁ)]dy
91 vi) M 92V )M 9V )M

(3.3) < 9—lin—iil

(20131 [y |)Mnr (202V31 - |o| ) M2 (203V31 4 |4]) M s
This together with
2]2 2(]2\/33)M

(272 4 |ao|)MH72 (202V95 - |a4|)M+7s

2 3
057 %0 5 (03, 5)| S

yields
75 (@) = s 0] 52 [0 %2 ) ()]
< 9= lin—=7il [ﬁ maxlgkﬁ %(jkvj;)M }
(34) ~ - (maxlékg Ik VI + ’.CClD"2+M

1
3 -
. Ji M
_ o—li—il [H InaX1<k<z2 }
L (e <y 295 + [ )

The same techniques yield
2 1 3
(o Yr(@)] = [l %23 05 ] % [0y 3 0] ()]

3 M
< 9—li2—3s [H maxi <j<; 27 ]
~Y =/ .

o (maxycpgg 2% + o | )it M

(3.5)
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and

(e % P (@)] = |lips 3 0] % [} %05 1) ()]

3 i M
< 9-lis—j| [H maxi <p<; ¢ ]
~ i/ . N
(max)<p<; 2k + |a|)nitM

(3.6)

i=1
Taking the geometric mean of (3.4) — (3.6), we obtain (3.2) with e = 1/3.

Case 2. j, > ji,j2 < jb,J3 < ji. We use the moment condition of ¢)(") and Taylor’s
remainder theorem to get

ferx i@l = | [ leste =) = Paliul @)l )y

§( Z 2—|j1—j1|L12—|j2—ji|L2>

Li+Lo=L
9(1Vi M 9(j2Vi )M 9(isViy )M
x <2j1Vj{ + |$1|)M+n1 (2j2Vji + ’x2|>M+Tl2 (2j3vji + ‘xSDM—FnB

Uit Vi )M 92V )M oUavil)M
(201V31 1 [y |) M (20255 4 |rg| )Mz (255V31 4 |g])M+na”
where in the last inequality we have used the fact that |j; — j1| > |j2 — j1| and Pr_4[f] is
the (L — 1)-th order Taylor’s polynomial of f. It follows that
1 2 3
(o 5 ()] = [l 5] w2 (W5 0 03] ()]
91 M (41 Vis) M (41 VizVig) M

(200 4 |y )M+ (200V3h 4 |y |)Mna (201VIEVIE 4 |g5])M+ns

—|j1—3g11L
S 2

—Llj1—j1l
< 2 i

y - 9dpM
< 9-(L=M)li—7i| Maxi<k<i 2

- [E (maX1gkgi 2% + ‘xl|)n+M]

The other cases, {j1 < ji,J2 > js.js < J3}, {01 > Ji,J2 > Ja.Js < sk, {1 < Jlaja <
JasJ3 < Jsts {01 > J1,J2 < Jayds < Jsks {01 < Ji,de > Ja,ds < ik, and {j1 > ji, g2 >
Jhy 73 < j4}, can be handled by the same manner and details are left to the reader. O

Lemma 3.2. Let K be a flag kernel. We have

-/
maxj<g<j 2JkM

3
(3.7) [y % KC % ()] S 27 1OMUn—si+liz=dahelis=is) T
=1

maxlgkg 2]’/C + |l‘i|)1+M ’

Proof. 1t is well known that @/J](-f)*@/)](f) satisfies the same differential inequalities and moment
. Ll (i , 1 1 2 2 3 3
conditions as 277 3i|1pj(.i3/j£ on RN, Thus, ¢ x1)y = W('l)*%(‘;)]*% [@Z)(. )*¢§g)]*3[¢(' )*1/132)]

J J2 J3
. . _ s ) . -
satisfies the same properties as 2~ L1 —7il+l2=2[+15sVishy) 1, 0 where

o0 s @ ®)

;= Ll NEITEE YIN
Yva J1vih T23 ¥havgh T3 ¥ihsvilh

By [NRS, Corollary 2.4.4), K = >, . . gpSJ), where {¢(/)} is a bounded collection of
C functions, each of which is supported on {|z;| < ¢,i = 1,2,3} with (3.1), and the
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series converges in the sense of distributions. Lemma (3.1) yields
oK@ < 30 |5 [y + @)
<32 <35
< Z 9~ L(13 = (1 Vi1)|+15 = (72Vis) [+135 — (GaVi5))

I <55 <358

w

maX1<k< 2(]1@\/]2)]\4

(maxy<pe 206 Vk + [;]) 1 +M

w 9~ Ll1=71 141275+ 173 —730) | |
=1

3 (GeVi!
JkVJ )M
< 2*(|j1*j{lHjQ*jéHljgfjg\)L[H maxi<k<; 2 k
~ (max <pe; 206VIR) 4 |2 )i tM 1

—

1=

This finishes the proof of Lemma 3.7. U

We now turn to the
Proof of Theorem 1.4. By the discrete Calderén reproducing formula,

TPl = [{ 3 1o wk s famn)

JEZ3 RERYL

_H{Z Z ’ Z Z \R'[py * fxr )by * K *pp(rg — xp)

J€Z3 ReRY. J'€L® R'eR%

LY,

Sl

Lemma 3.7 says that, for each J,J' € Z3, 1 x K * 1) satisfies the same orthogonality
estimate as ¥y x1 . Thus, repeating the same argument as the proof of Theorem 1.1, we

Lp

obtain
1
5,22
1Tl o S [{ 0 MACY 1+ flam)Prxn)® 3} Sl v
Jrezs ReRL »(RN)
This concludes the proof of Theorem 1.4. [l

To prove Theorem 1.5, we need a new Calderén type identity in terms of bump func-
tions. More precisely, let () € S(R™) be supported on B(0,2) and satisfy

oW (z) (2")¥dx’ = 0 for 0 <|a| < Myandi=1,2,3,
RN
where M, is a large positive integer given in Theorem 3.3 below, and
Y 0@ =1 for & € RM\{0}.
Ji€ZL

For J = (1, ja, j3) € 73, set ¢s(x) = (¢J1 % ¢J2 % ¢J3 )(z), where ¢\ = donx, @ 6.

Theorem 3.3. Let 0 < p < 1 and w € AZ (RY). Suppose My > 10(N{[q,/p—1]V2}+1)
(here [ -] means the greatest integer function). For a fized sufficiently large K € N, let
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R‘J]T’K = RﬂéfK’jTK’j?’*K and let xr denote the left-lower corner of R. Then, for every
fe L*RY)N HY. , there exists h € L*(RY) N HY. , depending only on f such that

(3.8) F@E S S |RIGs(@ — wr)dy * hlag).

Moreover,

(3.9) 1f Iz, ~ Alm -

Proof. For f € L?(RY), applying the Fourier transform gives f = > Jezs Gaxdyx f, where
the series converges in L?(R™) norm. Using Coifman’s idea of the decomposition of the
identity operator, we have

@) =YY" |Rl¢s* f(zr)ps(x — zR)

3 J,K
JEZ RERZ

+ Z Z /R[CbJ(x — ') (¢ x f)(2') — ¢s(x — zr)(dg * f)(zr)]d2’

JEL® Rer K
= Tr(f)(x) + R (f) (),
where K is a fixed large integer to be determined later.
We can decompose Rg(f) further as

(D) = X 3 [ (oae =) = osla = ol )i

3 J,K
JEZ RER

£ 5 [ osa =6 D) = 012 Dlanlr

3 J,K
JEL RERZ

= Ryc(f)(x) + Ry (f)(2).
We claim that for k£ =1, 2,
(3.10) IRE (Allae, < C275| flla. s
where C' is a constant independent of f, K and zg.

Assume the claim for the moment. Then choosing sufficiently large K such that C2=% <
1 implies that both T and T' = > ((Rx)"™ are bounded on L*(RY) and on H}. , (RY).
Setting h = Ry'(f) gives (3.9). Moreover,

F=Te(T () =Y Y |RI¢s(-—xr)(¢s*h)(zr),

3 J, K
JEL® ReRy
where the series converges in L?(RY).

To finish the proof of Theorem 1.5, it suffices to verify the claim. Since the proofs for
R and R are similar, we only estimate Rj.. Let f € L*(RY) N HY  (RY). The discrete
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Calderén reproducing formula in Theorem 2.1 yields

Vo * Rie(f)(2) =) ) /R by [0s(-— ) — ¢s(- — zr)(2) (g * f)(2)da’

3 J K
JEL RERZ

(3.11) =X Y [l = st~ anl@)

3 J, K
JEL RERZ

X ( Z Z |R"| - hgn % f(xRr)ds * (2’ — JJRN)>d1”,

1"e73 g
J'€Z® R"eR %

where xrr = (zqr,vqy, xqy) is the left-lower corner of R”. Set bs(u) = ¢y(u— ') —
¢j(u — xg). Applying Lemma 2.2 with M sufficiently large (which will be determined
later) and L = 10M, we obtain that for some constant C' (depending only on M, ¢ and
¢, but independent of K),

3
W % ()] < C2~ K2 10M (=g [+ liz—sb+lia—=33))
i=1

-/
maxi<g<; QJkM

., ,
(maxy <pei 2% + |a; — ] ) M
and, similarly,

'IIM
L L o max ke
|y * (' — xp)| < (9~ 10M (|1 =37 [+]52 =35 | +]d3—351) 1<k<i

3
Pl (max) << 20K+ |z} — xQ;”)HM.
Substituting both estimates into the last term of (3.11) yields
(3.12)

Wy R (A @) S D0 Y R [ # f(apn)]

1 3 Jll
J'€L® ReRL

3 i M
_ i maxi<g<; 2’%
> E E /2 KH2 lgi—313M <k<i
R i=1 (

-/
max i 2k + |x; — o) M
Jez3 RGR_‘;_-’K 1<k<i | 7 z|)

‘/IM
—ji—g" maxi<p<; 2'%
X 2 ‘]z Ji ‘SM =R d];,

=1
(maxi<p<; 2% + |2} — 2y )M
-K E E —(31 =37 |+lis =35 | +i5—35 VM | prt
S 2 2 171 27 J2 37713 ‘R ’
1"e73 g
J'€Z® R"eR %

3 gl
X (H max <g<; 20k Ve M
-/ =1
(maxy <p<; 2767k + |2, — 2oy )1+

Vi 5 f ()

i=1
Now we choose M = N{[q,/p — 1]V 2} +1, L = 10M and N/(N + M) < 6 < 1. Then
p/6 > q, so that w € Af/ s(RY). Arguing as in the proof of Theorem 1.1 yields

S 275 f Ml

F,w

IRy, 275 {0 MA T o= Sl

" 3 J//
JI'eZ R'eERY

This confirms claim (3.10) and hence Theorem 3.3 follows. O

LY
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Using a similar argument to the one in the proof of Theorem 1.1, one can prove

Corollary 3.4. Suppose w € AZ(RY). Then, for f € HY. (RV)NL*(RY) and0 <p <1,
we have

7wy~ G Dllizeny = [{ 3 32 1 e Pre}

3 JK
JEZ RERZ

b (RN)
where h and K are the same as in Theorem 3.3.

The key to the proof of Theorem 1.5 is the following

Lemma 3.5. Suppose 0 < p < 1 and w € AL (RY). If f € H% ,(RY) N L*(RY), then
f € Lt (RYN) and there is a constant C), > 0 independent of the L*(RY) norm of f such
that

1fllze, @y < Coll fllag , ey

Proof. Without loss of generality, we may assume w € A7 (RY) for some ¢ € [2,00).
Given f € L*(RY) N HE (RY), set Q; = {x € R : gz(h)(x) > 2'} where h is given by
Theorem 4.3, and

B;={(J,R): J € Z*. R € RZ", [RNQ| > (1/2)|R|, |k N Q| < (1/2)|R]}.

Applying the discrete Calderén reproducing formula in Theorem 3.3, we can write

F=>"3" |RIés(-—wr)ps+h(zg)  for f € L*(RY) N HE (RY).

i€Z (J,R)EB;
We claim that
-~ p
(3.13) | > IRIGs( — wr)os < hian)

(J,R)EB; Lo®Y)

Since 0 < p < 1, the above claim together with Theorem 4.3 yields

Hf”LP (RN) < Z H Z ‘RWJ - QTR)QSJ * h(l"R)

i€Z  (J,R)EB;

<D 2w(Q) STy vy = 101 gy = 15 e,

€L

L (RN)

and Lemma 3.5 would follow.
To show claim (3.13), we note that if (J,R) € B;, then ¢ (x — xg) is supported in
Q; = {x: Mz(xq,)(z) > 1/100}. By Holder’s inequality,

| 32 1R wr)os s hian) |

(J,R)EB; L (RM)

< w (€)=

(3.14)

p

> RIS (- — )by * h(zp)

(J,R)eB;

LL,(RN)
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We now estimate the last L?-norm by duality argument. For ( € Lilfq’ (RY) with
||C“Lq (RN) < 1

> RIS = wnr)os  hwn).C )

(J,R)€B;
Z /¢J * C((wR)ds * h(zr)Xr(z )dﬁ‘
(J,R)EB;
1 1
2 2 e 2 2
< H{ Z |6 * h(zg)| XR} ‘L‘EU(RN) { Z | % C(wg)] XR} ‘Lq/ @
(JzR)eBl (J,R)EBl wl—¢q
= [1 X IQ,

where ,(z) = 5(~).
We first estimate I5. Since w € AF(RY) implies w'™ € AZ(RY), Corollary 3.4 and
Remark 1.2 yield
W

sy e5{T T Aot

JGZB RGR;K wrT

<1

As for I, note that €; C €; and w(€;) < w(€) due to the L2 (RY) boundedness of
Mz. For any (J,R) € B; and © € R, Mr(Xpag\q,,,)(®) > :. Applying Corollary 2.5
again, we have

I = / > ¢y *hzr) xalx )}q/Qw(I) dx

(J,R)EB;

S [ {3 e e Mo, @} @)
(3.16) (J,R)EB;

a/2
LAY kel vl ds
Qi\Qit1 (J,R)EB;
< 21(€) < 219w().
Combining both estimates (3.15) and (3.16), we obtain
H Z |R|5J( — TR)Py * h(ZUR)‘

(J,R)EB;

LL,RN) ™

Plugging this estimate into (3.14) yields claim (3.13), and hence Lemma 3.5 follows. [

Proof of Theorem 1.5. For f € L*(RY) N HY (RY), by Lemma 3.5 and Theorem 1.4,
1T gy < CINT (I, @y < CllflEg, @y)-
Corollary 2.6 together with a limiting argument yields Theorem 1.5. 0J

Finally, we prove Theorem 1.6. It is known that L*(RY) N H% (RY) is dense in
HY ,(RY). This allows us to use the discrete Calderén reproducing formula in Theorem
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3.3, which plays a crucial role in the proof of the boundedness of flag singular integral
operators on HY  (RY). However, L*(RV)NCMO% ,(RY) is not dense in CMO%  (RY).
As a substitution, we prove the following lemma, which is called the weak density.

Lemma 3.6. Let 0 < p < 1 and w € AL (R"). Then L*(RN)NCMO% ,(RY) is dense in
CMO% ,(RY) in the weak topology (HY ,(RYN),CMOY% (RY)). More precisely, for any
f e C’MO%UJ(RN), there exists a sequence {f,} C L*(RN) N CMOpr(RN) satisfying

[fnllemon. @y S 1fllemon. , @y) and

lim (f,.g) = (f.g)  for any g € Hy ,(RY).

Proof. Suppose f € CM O%w(RN ). Set
falz) = Z Z |R[¢y * f(xr)Ys(x — 2R),
|71<n,|k|<n RCB(0,n)
where {1} satisfy (1.3) and (1.4). Tt is easy to see that f, € L?*(R"). Repeating the same
proof as the one in Theorem 1.2, we have ||fn”CMog__7w(RN) < C||f||CMO—1;_7w(RN) and hence
fo € *RY)NCMOY (RY). For any g € So(RY), the discrete Calderén reproducing
formula given in Theorem 2.1 yields

(= fun g = { > By % f(wr)bs(- = 2r),9)

|7]>n,0r|k|>n,0r RCB(0,n)
= <f’ > Rl * g(zr)ds (- _xR)>‘
|7|>n,or|k|>n,or RCB(0,n)
By Corollary 2.6, the function
> |R|vy * g(xr)Ys (T — zR)
|7|>n,or|k|>n,or RCB(0,n)
belongs to HY ,(RY) and its H% ,(RY) norm tends to 0 as n — co. Hence, Theorem 1.3

implies that (f — f,, g) tends to zero as n — oco. Since S, (RY) is dense in Hff,w(RN), a
standard limiting argument finishes the proof of Lemma 3.6. U

Now let us show how a flag singular integral operator T= acts on C'M O%w(RN ). Given
f e CMO% ,(RY), by Lemma 3.6, there is a sequence {f,} C L*(RY) N CMO% ,(RY)
such that

(3.17) { I fallemor ,@vy < Cllfllenon. )

lim (fu,g) = (f,g)  for any g € LA(RY) N HY, (RY) °
We thus define
(T#(f),9) = lim (Tx(fn),9)  for any g € L*(RY) N HE (RY).

n—o0

To see that the limit exists, write ((T%)(f; — fx),9) = (f; — f, (T7)*(g)) since both
fi — fx and g belong to L*(R"), and T is bounded on L?(RY). By Theorem 1.4, (T'r)* is
bounded on H% (RY), and thus (T7)*(g) € L*(RY) N HY  (RY). Therefore, by Lemma
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3.6, (fi— fi, (T’7)*(g)) tends to zero as j, k — oo. It is also easy to verify that the definition

of T#(f) is independent of the choice of the sequence f,, satisfying the conditions in Lemma
3.6.

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. We first show that for f € L*(RY) N CMO% ,(RY) and any open
set €2,

1
S 3 oo s Krn Fa)P T < fllewon, e

Jez? RERJJ,__ ( )
RCQ

R|?
3.18
(318) -

1
e
[w()]”
Using the discrete Calderén reproducing formula given in Theorem 2.1, we write

DD s Krx f($R)|2ﬂ

Jez3 ReRL w(R)
RCQ

2
“ Y YIS X tlRI ¢ K ko — o)

JEZ3 rRerL  J'ELP R’GR}’
RCQ

where tp = Y y* f (2 )| R'|Y2. By (3.7), ¥7%K 1 satisfies the same almost orthogonality
estimate as 1y * ¢ ;. Repeating the same argument as in Theorem 1.2 yields (3.18).

For f € CMOY% ,(RY), there is a sequence {f,} C L*(RY) N CMOY%  (RY) satisfying
(3.17). By the definition of T(f) and the boundedness of T on L*(RY)NCMO%  (RY),

IT#(Pllosoy @y < liminf [ Tx(fo)llcrmor, , @)
S liminf || fulloaos, @y S 1flleaor, @),

which concludes the proof of Theorem 1.6. U

4. CALDERON-ZYGMUND DECOMPOSITION AND INTERPOLATION

We first prove the Calderén-Zygmund decomposition for H %w.

Proof of Theorem 1.7. According to Corollary 2.6, L*(RY) n H% (RY) is dense in
HY ,(RY). Thus it suffices to prove Theorem 1.7 for f € L*(RY) N HY (RY). Given
any fixed a > 0, let = {z € RY : gx(f)(z) > a2}, | € Z, where gz(f)(z) :=
{22 sems 2opersx [0 f(zr)|*xr(x)}/? and K is given in Theorem 3.3. For J € Z>, let

RI® ={ReR2" : |[RN Q| < 1/2|R|} and
R ={Re R :|RNQ_1| >1/2|R|,|[RNQY| <1/2|R|}  forl>1.

It follows from Theorem 3.3 that there exists h € L* N H} , such that

fx) =Y > |Rlos*h(zr)ds(x - xx)

JEL? ReRY K
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+ Z Z Z |R|¢s * h(zr)ps(x — zr) == g(z) + b(x).

JEZ? 121 Rer) K

We first estimate ||g|| R, . Repeating the same argument as in the proof of Theorem
1.1, we deduce that for (n —1)/(n=1+ M) <6 <min{(p2/qu), 1},
|}

S W xglar)Pxa) S Y {M;[ > o gler) Pxw)
JEZ? RERT J'ez’ Rrer] K

Take the square root on both sides and apply Corollary 2.5 on L2/°(¢2/%) (note that

w e Ap s5) to derive

ol o S [{ S 3 lowwhlem) P}

[N
>N

J'ez3 R/eRO‘]' LiF (®Y)
We claim
ay [ Gz |{ X3 lerhewle |,
{g;:(f)(x)ga} J'c73 RERJ/ Ly (R )
which implies
ol o < / G () (@) () da
Hrw®D ™ JGrh@<ar
<ot [ (p@Peteds S oSy
{97(f)(x)<a}

as desired. It suffices to verify claim (4.1). Choose 6 < min{p2/q,, 1} and get

Lo B
{97 ()<

:/ > D 1bs h(@r)PXroga (z )}gw(ﬂf)dﬂf
JEL? ReR N
2 [ AX X 6+ han Metxneo) @)} wla)da
JEL? ReR LK
[P SEDRTEET o i
JEL? ReR K )’

where in the last inequality we have used the estimate that xz(z) < 25 Mz(x Regay)® (2)
for R € R‘J]T’K, and the first inequality follows from Corollary 2.5 with ¢ = 2/§ and

p:p2/5.
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Now, we turn to the estimate for H%',(R") norm of b. Set Q= {z e RY : Mx(xq,) >
%}, [ € Z. Then the desired estimate follows from

(42 ||X D RIes her)os( — wn)

Jez3 RGR‘] K

p1

< (2la)p1w(§NZl_1),

HE (RN
for any 0 < p; <1 and [ > 1. Indeed, by the L% (R"Y), ¢ > q,,, boundedness of Mz,
W@ 5 [ [Mrlxa )@l S w(@i)
R

This fact together with (4.2) yields

HbHle ) S aPrw(@i) S 2wy S/ [97(f) (@) w(z)dx
{97 (f)(z)>a}

>1 >1
s [ et S ol
{g7(f)(z)>a}

Thus to finish the proof, it remains to establish (4.2). Following the same argument as in

H{Z Z (¥ *xg) $R|XR}

the estimation of

Jez3 RGRJK L{?(RN),
we get
(4.3)
H > Y IRl h(xr)ds(- — xR ‘le < H{ YD (s h(zn)l XR} .
JEL? Rer) K JEL3 ReR) K w

Note that R € Q;_y for R € R}"™. Thus, |[RN (Q_1 \ Q)| > $|R|, which implies

().

As in the proof of claim (4.1), choosing § < min{2, p;/q,} and applying Corollary 2.5, we
have

=

Xr(7) < 25MI(XRm(Ql I\Ql))

3

1

(QZ " (Ql 1 _/ {Z Z | * h(zp | XRN(S_ 1\91( )}TW(@dm

Jez? RGRJ K

2 [ X 3t bl PMAn )

JEeZ3 RGRJ K

>H{Z > 16sxhizg)] XR}

Jez3 RERJ K

SN
3
ol

(z )} w(z)dz

L5} (RN)

Combining this with (4.3) yields (4.2), and hence Theorem 1.7 follows. O
We end this paper with the
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Proof of Theorem 1.8. Suppose that T' is bounded from H% (RY) to L&} (RY) and
bounded from H (RY) to LE2(RY). Given f € H% (RY),p1 < p < ps, the Calderén-
Zygmund decomposition shows that f = g + b with ||g||”> S a2 7P| f]1, LRY) and

H;’__%M(RN) ~
1) s S a7 P f H Moreover, in the proof of Theorem 1.7, we have obtained

le RN) (RN)-
95 o < [ G5 @) w(2)da
{97 () (@)<a}
and
155 ) % [ 37 (F) @) w(a)da.
{97 () (@)>a}
Therefore,

Ty <2 [ 07 il [Tg)(@)] > GHdo
+p/0°o o Nw({e: [TG)(@)] > S})da

5/Oooép_l(|IT(9)I|L53)2>fﬂzdaJr/""O/C,_I(IIT(??)IIL:;}>pl
0 Q 0 o

s ae | [35(f) (@) w(w)dada
0 {97 (f)(z)<a}

+ > p—p1—1 ~ f D1 dxd
SUAIB, oy

Thus, | T'f] ey S I1f |z, ) for any p € (p1,p2). Hence T'is bounded from HY ,(RY)
to LP (RM).

To prove the second assertion that 7" is bounded on H %W(RN ) for p € (p1, p2), for any
given o > 0 and f € H %w(RN ), we apply the Calderén-Zygmund decomposition again to

obtain
w({z: [g7(T))(@)] > a}) < w{e : |[g(Tg)(x)] > a/2}) + w({z : [gr(T)(x)| > a/2})
S aPNTG) G @y + IO gy
S a7 ”llgl @y + o Bl gy

<P Jr x)|P?w(z)dx
< /{gf(f)(m}[g (F) (@) w(z)

a P gr(f)(x)]Prw(x)dx,
+ /{M o EE D@

which, as above, shows that |[g#(T'f)[|zz @~y < [[fllgz g~y and hence, HTfHHp C®N) S
U

| f]] HE.  (RY) for any p € (p1,p2). The proof of Theorem 1.8 is complete.
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5. APPENDIX: RELATIONS AMONG DIFFERENT CLASSES OF WEIGHTS

In this appendix, we clarify the relations between different classes of weights by con-
structing some examples/counterexamples.

Proposition 5.1. For 1 < p < oo,
AT (RY) © AT(RY) € A, (RY).

To prove this proposition, we need the following lemma.

Lemma 5.2. (i) If —n < a and A > 0, then (|z| + A)*dz is a doubling measure with
doubling constant depending on the doubling constant of |x|°dx and n, but uniformly in

A;
(i) If n<a<n(p—1) and A >0, then (|z| + A)* is an A, weight uniformly in A.
Proof. If A =0, the above claims are well known. Let us prove (i) first. For any A > 0,

fix A and divide all balls B(xg, R) in R" into two categories: balls of type I that satisfy
|zo| + A > 3R and type II that satisfy |xz¢| + A < 3R.

For the balls of the first type, we have

R"(|zo| + A+ 2R)*, ifa>0
J RIS 3 o
(5.1) B(z0,2R) R™(|zo| + A—2R)*, ifa<0
5 Rn+a
and

R*(|lwo| + A —2R)®, ifa>0
(5.2)

/B(xO,R)(|x| A2 R™(|xo| + A+ 2R)?, ifa<0
2 R
from which the doubling property follows.
For balls of the second type, we have |zg| + A < 3R. Therefore

/ (|z| + A)%dx < / (|z| + A)*dx
B(0,2R) B(0,5R)

5R
~ / (r + A" tdr < R
0

and

/ |z|%dx, ifa>0
/ (o] + Ayde > { 72O

(5.3) B(zo,R) / |z|%dx, ifa<O
B(3R

K
lzgl R)

2 R
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Hence (i) has been proved.

For (ii), we need to prove that if —n < a < n(p — 1), then

P

(5.4) <|;| /(m +A)“dx> (é/}g(m +A>—a’idx) " L0 < o,

where C' is independent of A and B. To this end, we split the balls in R" into balls of
type I and type II as above. If B = B(xg, R) is a ball of type I, then

P
I

LHS of (5.4) =~ (|xo| + A)* [(!xo\ + A)ai] =1

If B = B(xo, R) is a ball of type II, then by the doubling property of (|x|+ A)%, we
obtain

1 1
LHS of (5.4) ~ (ﬁ /B(O 5R)(|x| +A)adx> (ﬁ /13(05R)(|x| + A)” pdx)

1 [5R 1 [5R id
(ﬁ / (T + A)a’l“n_ldT) (ﬁ / (7“ + A) r"T 1d7’)
0 0

This concludes the proof of Lemma 5.2. ([

P
Iy

Q

Proof of Proposition 5.1. By definition, it is clear that AP(RY) C AJ(RY) C A,(RY).

Now, let us show that these inclusions are proper. For simplicity, we only consider the
bi-parameter case N = ny + ny. Choose a € (—nqy,n1(p —1)),b € (0,n2(p — 1)) such that
a+b>ny(p—1). Let

w(z,y) = |z|*(|z| + y])".
We claim that

(5.5) ess Supl(-, )] a, ey = 00
yeR™2

(5.6) sup [w(z, -)]a, @) < 00
zeR™1

(57) [w]AP(RN) < Q.

Assume that (5.5), (5.6) and (5.7) hold for the moment. Then (5.6) and (5.7) imply
w € A7 while (5.5) implies w ¢ AP, and hence AP°(R"Y) C AZ1(RY).

Now let us prove (5.5), (5.6) and (5.7). To verify (5.5), we note that for any x € R™
and any y € R"2,

/
P

w(e,y)™5 = 2|~ (2l + )~ > Jo|”

(a+b)p
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(atb)p’ . . ’ .
Note also that x| » “ is not integrable over Q(0, 1) since —% < —ny by our choice

of a and b. Hence for any y € R"2,
/ w(z,y) VP Vg > / 2|~ @Y dr = oo,
Q(0,1) Q(0,1)

which gives (5.5). (5.6) follows immediately from part (ii) of Lemma 5.2 whereas (5.7)
follows from (5.6).

Finally, we take ¢ € [na(p—1), N(p—1)). It is well known that (|| +|y|)¢ is in A,(RY).
But (|z] + [y|)® ¢ AJ*(RY) since esssup(|z] + | - [)]a,@n2) = 00 by part (i) of Lemma

z€eR™1

5.3. This completes the proof of Proposition 5.1. O
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