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Abstract This paper presents a PDE system modeling the growth of a single species
population consuming inorganic carbon that is stored internally in a poorly mixed
habitat. Inorganic carbon takes the forms of “CO2” (dissolved CO2 and carbonic acid)
and “CARB” (bicarbonate and carbonate ions), which are substitutable in their effects
on algal growth. We first establish a threshold type result on the extinction/persistence
of the species in terms of the sign of a principal eigenvalue associated with a nonlinear
eigenvalue problem. If the habitat is the unstirred chemostat, we add biologically
relevant assumptions on the uptake functions and prove the uniqueness and global
attractivity of the positive steady state when the species persists.
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1 Introduction and the model

Resource competition theory is an important topic concerning the interaction between
the limiting resource(s) and the species. The most basic limiting resources for growth
include nutrients (e.g., nitrogen and phosphorus), light, and inorganic carbon. Several
previous works have considered the competition between the species for nutrients
(e.g., nitrogen and phosphorus), or light, or both of them. However, the competition
for inorganic carbon have received very little attention. The main difficulty is the
biochemistry of inorganic carbon, which is much more complicated than that of nutri-
ents and light (Van de Waal 2011). The detailed mechanism of chemical interactions
involved in the competition for inorganic carbon can be found in Nie et al. (2016) and
Van de Waal (2011). The authors in Van de Waal (2011) proposed a system of ODEs
modeling the competition of the species for inorganic carbon that is stored internally
in a well-mixed chemostat, in which dissolved CO2 and carbonic acid are regarded as
one resource (denoted as “CO2” ), and bicarbonate and carbonate ions are regarded as
another (denoted as “CARB”). The resources “CO2” and “CARB” are substitutable
in their effects on algal growth (Nie et al. 2016; Van de Waal 2011).

Tomake the mathematics more tractable, we will follow the ideas used in the recent
work (Nie et al. 2016) to simplify the complex processes of “CO2” and “CARB”
involved, and modify the ODE system proposed in Van de Waal (2011). In order
to model the interactions between the limiting resource(s) and the species, we need
to specify the amount of resource(s) consumed in the growth of one new individual
(Grover et al. 2012).Assuming that all individuals have the samequota of resource(s) at
any instant, we consider the following variable-internal-storagemodel in a well-mixed
chemostat (Grover et al. 2012; Nie et al. 2016; Van de Waal 2011):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d R
dt = (

R(0) − R
)

D − fR(R, Q)u − ωr R + ωs S,

d S
dt = (

S(0) − S
)

D − fS(S, Q)u + ωr R − ωs S,

d Q
dt = fR(R, Q) + fS(S, Q) − μ(Q)Q,

du
dt = [μ(Q) − D] u,

R(0) ≥ 0, S(0) ≥ 0, Q(0) ≥ Qmin, u(0) ≥ 0.

(1.1)

Here, R(t) represents the total concentration of “CO2” (i.e. dissolved CO2 and car-
bonic acid); S(t) represents the total concentration of “CARB” (i.e. bicarbonate and
carbonate ions); u(t) denotes the population density of the species; Q(t) stands for
the cellular carbon content. The fourth equation in (1.1) describes the population den-
sity of the species, where μ(Q) is the specific growth rate of the species, and Qmin
denotes the threshold cell quota belowwhich no growth of the species occurs. The third
equation in (1.1) describes the cellular carbon content of the species, which increases
through uptake of “CO2” ( fR(R, Q)) and “CARB” ( fS(S, Q)), and decrease through
consumption of cellular carbon for growth. We ignore the effect of respiration in
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system (1.1). The first two equations of system (1.1) describe changes in dissolved
inorganic carbon in the environment. The first equation represents the changes in the
concentration of dissolved “CO2” through the influx R(0) and efflux of water con-
taining dissolved “CO2”, through gas exchange with atmospheric CO2, and through
the chemical reaction from dissolved “CO2” to “CARB” and vice versa, and through
uptake of “CO2” ( fR(R, Q)u) by the species; the second equation describes changes
in the total concentration of “CARB” through the influx S(0) and efflux of water con-
taining these inorganic carbon species, through the chemical reaction from “CARB”
to dissolved “CO2” and vice versa, and through uptake of “CARB” ( fS(S, Q)u) by
the species (Van deWaal 2011). We further assume that carbonic acid loses a proton to
become bicarbonate at the rate ωr , and the rate of the reverse reaction is denoted by ωs

(Nie et al. 2016). All the parameters depend on the physical and chemical conditions
of natural waters (e.g., temperature, pH and alkalinity) (Nie et al. 2016; Van de Waal
2011). The chemostat is supplied with inorganic carbon at constant concentrations
(R(0), S(0)) at dilution rate D. In De Leenheer et al. (2006) and Li and Smith (2007),
the authors investigated models of two complementary/essential resources with inter-
nal storage in which growth rate for species is determined by the minimum of two
Droop functions. This type of growth rate reflects that the two resources are com-
plementary/essential, not substitutable. Two mass conservation laws can be derived
for the models in De Leenheer et al. (2006) and Li and Smith (2007), and hence, the
authors in De Leenheer et al. (2006) and Li and Smith (2007) can reduce their systems
to monotone systems. We point out that only one mass conservation can be obtained
for system (1.1), and it can not be reduced into a monotone system without imposing
extra assumptions on the uptake functions. Thus, the arguments in De Leenheer et al.
(2006) and Li and Smith (2007) can not be applied to system (1.1).Wewill summarize
the results of system (1.1) in the Discussion section.

In Droop (1968, 1973, 1974) and Van de Waal (2011), the growth rate μ(Q) was
taken to be

μ(Q) = μ∞
(

1 − Qmin

Q

)

, ∀ Q ≥ Qmin, (1.2)

or

μ(Q) = μmax
Q − Qmin

Qmax − Qmin
, ∀ Qmin ≤ Q ≤ Qmax,

whereμ∞ is themaximal growth rate at infinite quotas (i.e. as Q → ∞) of the species;
μmax is the maximum specific growth rate of the species; Qmin is its minimum cellular
carbon content required for growth; Qmax is its maximum cellular carbon content.
According to Grover (1992), for N = R, S, the uptake rate fN (N , Q) takes the
form:

fN (N , Q) = ρN (Q)
N

kN + N
. (1.3)

The function ρN (Q) is defined as follows:

ρN (Q) = ρ
high
max,N −

(
ρ
high
max,N − ρlow

max,N

) Q − Qmin

Qmax − Qmin
, (1.4)
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or

ρN (Q) = ρmax,N
Qmax − Q

Qmax − Qmin
, (1.5)

where Qmin ≤ Q ≤ Qmax. The authors in Cunningham and Nisbet (1980), Cunning-
ham and Nisbet (1983) and De Leenheer et al. (2006) took ρN (Q) to be a constant,

ρN (Q) = ρN . (1.6)

Motivated by the above practical examples, we assume that for N = R or S, the
functions μ(Q) and fN (N , Q) satisfy the following assumptions:

(H1) μ(Q) is Lipschitz continuous for Q ≥ 0. Moreover, μ′(Q) > 0 for a.e. Q ≥ 0,
and there exists Qmin > 0 such that μ(Qmin) = 0.

(H2) (i) fN (N , Q) and ∂ fN (N ,Q)
∂ N are Lipschitz continuous in N ≥ 0 and Q ≥ 0;

(ii) ∂ fN (N ,Q)
∂ N ≥ 0, ∂ fN (N ,Q)

∂ Q ≤ 0 and fN (N , Q) ≥ 0 for a.e. N ≥ 0 and Q ≥ 0;
(iii) there exists Q B ∈ (Qmin,+∞] such that

fN (N , Q) > 0,
∂ fN (N , Q)

∂ N
> 0 in

{
(N , Q) ∈ R

2+ : N > 0 and Q ∈ [0, Q B)
}
,

fN (N , Q) = 0 in
{
(N , Q) ∈ R

2+ : N = 0 or Q ≥ Q B
}
.

(When Q B = +∞, it is understood that fN (N , Q) = 0 if and only if N = 0).
One can easily use a natural way to extend the functions μ(Q) and fN (N , Q) in
previous examples to be defined in R+ and R

2+, respectively, while satisfying (H1)
and (H2).

There have been several works investigating populations and dissolved nutrients
that are poorly/partially mixed in spatially variable habitats (Ballyk et al. 1998; Bax-
ley and Robinson 1998; Grover 2009, 2011; Grover et al. 2009; Hsu et al. 2010;
Hsu and Waltman 1993; Mei et al. 2016). One simple, spatially distributed habitat is
the unstirred chemostat (Baxley and Robinson 1998; Hsu and Waltman 1993; Smith
and Waltman 1995), which was introduced as a poorly/partially mixed analog of the
chemostat with transport of nutrients and organisms by diffusion. An advantage for
the species with quota variation in spatially variable habitats is that individuals could
obtain nutrients in a rich zone of a habitat and for their later use to survive when
they travel to a poor zone (Grover 2009, 2011). Thus, the ecological models with
variable quotas in a spatially variable habitat are important and significant. How-
ever, such topics have received very little attention, perhaps due to the complexities
and difficulties in modeling as well as mathematical analysis. In the previous works,
there are three approaches of modeling to this issue. The first approach is to incor-
porate the physical transport equations governing spatial distributions of populations
and resources into equations for structured populations proposed in Diekmann et al.
(1984) and Diekmann and Metz (1986). We will give detailed descriptions about this
approach in the Discussion section. The second approach is the individual-based com-
putational model proposed in Grover (2009), where the author utilized the Lagrangian
framework developed in Woods (2005) to divide the population of each species into
a large number of subpopulations. Each subpopulation moves around the habitat, and
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its dynamics is governed by ordinary differential equations in relation to intracellular
stored nutrient (Droop 1974; Grover 1992), and the available nutrient satisfies a par-
tial differential equation with a simple diffusive transport process and a consumption
term. The Lagrangian/computational approach in Grover (2009) and Woods (2005)
can have higher accuracy for some results (Grover 2011), but it requires extensive com-
putation to achieve predictions and it cannot be analyzed mathematically. The third
approach is the reaction–diffusion system (Hsu et al. 2010) or the reaction–diffusion–
advection system (Grover 2011), which describes the dynamics of dissolved nutrient
concentration, the total concentration of stored nutrient by a species at a given point,
and the corresponding population density. Then the ratio of the total concentration of
stored nutrients by a species at a given point and the corresponding population den-
sity can be regarded as the average quota of individuals at a location (Grover 2011).
This approach may risk errors since population growth at each location is assumed to
depend on this average quota (Grover 2011). Recently, the author in Grover (2011)
compared the second approach with the third one, and he concluded that errors caused
by the averaging approach were relatively modest since both approaches can have
similar predictions concerning persistence/coexistence of species.

The averaging approach can be used to establish more tractable PDEs (Hsu et al.
2010), and it can be regarded as an approximation of the Lagrangian/computational
approach since both approaches have similar results (Grover 2011). Inspired by this
fact, we intend to adopt the averaging approach in Grover (2011) and Hsu et al.
(2010) to incorporate spatial variations into system (1.1). For this purpose, we assume
U (t) = u(t)Q(t) to be the total amount of stored inorganic carbon at time t . Then
(1.1) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d R
dt = (

R(0) − R
)

D − fR
(
R, U

u

)
u − ωr R + ωs S,

d S
dt = (

S(0) − S
)

D − fS
(
S, U

u

)
u + ωr R − ωs S,

dU
dt = fR

(
R, U

u

)
u + fS

(
S, U

u

)
u − DU,

du
dt = [

μ
(U

u

) − D
]

u,

R(0) ≥ 0, S(0) ≥ 0, U (0) ≥ 0, u(0) ≥ 0,

(1.7)

where the initial value (u(0), U (0)) satisfies U (0) ≥ Qminu(0). We propose the
following “unstirred chemostat model” of system (1.1) (or (1.7)):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt = d Rxx − fR
(
R, U

u

)
u − ωr R + ωs S, x ∈ (0, 1), t > 0,

St = d Sxx − fS
(
S, U

u

)
u + ωr R − ωs S, x ∈ (0, 1), t > 0,

Ut = dUxx + fR
(
R, U

u

)
u + fS

(
S, U

u

)
u, x ∈ (0, 1), t > 0,

ut = duxx + μ
(U

u

)
u, x ∈ (0, 1), t > 0,

Nx (0, t) = −N (0), Nx (1, t) + γ N (1, t) = 0, N = R, S, t > 0,

wx (0, t) = 0, wx (1, t) + γw(1, t) = 0, w = U, u, t > 0,

w(x, 0) = w0(x) ≥ ( 	≡)0, w = R, S, U, u, x ∈ (0, 1),

(1.8)
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where the initial value functions u0(x), and U 0(x) satisfy

U 0(x) ≥ Qminu0(x), on [0, 1].

It is worth mentioning that we consider a tubular chemostat so that the spatial dimen-
sion equals one in (1.8). The constants d and γ represent the diffusion coefficient and
the washout constant, respectively. Here we calculate the average quota carbon at the
location x and time t as Q(x, t) := U (x,t)

u(x,t) , and apply the functions μ and fN with the
functions μ and fN satisfying (H1) and (H2) respectively, for N = R, S.

Another natural habitat is the water column of lakes and oceans. In the
poorly/partially mixed water column, the phytoplankton, which is relatively homoge-
neously distributed horizontally, may be moved up or down by turbulence diffusion.
In addition, it also has a tendency to sink or float. Hence, our model in the water
column will be a reaction–advection–diffusion system (Grover 2009, 2011; Huisman
et al. 1999; Klausmeier and Litchman 2001; Nie et al. 2016; Yoshiyama et al. 2009).
The spatial coordinate x ∈ [0, L] represents the depth of a water column, with x = 0
being the surface and x = L the bottom. Concerning the model of phytoplankton in a
water column, we shall first discuss the corresponding boundary conditions before dis-
playing the full equation. Assuming that “CO2” (R) enters via the water–atmospheric
interface (x = 0), whereas “CARB” (S) enters via the sedimentary interface (x = L),
we propose the following boundary conditions for resources in the water column:

{
γR R(0, t) − Rx (0, t) = γR R(0), Rx (L , t) = 0, t > 0,

Sx (0, t) = 0, Sx (L , t) + γS S(L , t) = γS S(0), t > 0.
(1.9)

Assume that DR(x) and DS(x) are the vertical turbulent diffusion coefficients of
the resources R and S, respectively; γR represents the transfer velocity of nutrients
relative to DR(0) at the surface; γS represents the transfer velocity of nutrients relative
to DS(L) at the sediment interface (Yoshiyama et al. 2009). The following is another
type of boundary conditions for “CO2” and “CARB” used in the model of Nie et al.
(2016): {

γR R(0, t) − Rx (0, t) = γR R̂, R(L , t) = R(0), t > 0,

Sx (0, t) = 0, S(L , t) = S(0), t > 0,
(1.10)

where the positive constant R̂ is the thermodynamic equilibrium concentration of
“CO2” in water, whose biological explanations can be found in the introduction of
Nie et al. (2016); R(0) and S(0) are the source concentration of “CO2” and “CARB” at
the bottom of thewater column, respectively (Nie et al. 2016).We assume no boundary
flux for the species u and the total stored resource U , that is, u and U do not leave or
enter the water column at x = 0 and x = L:

d(x)wx (x, t)−ν(x)w(x, t)=0, for w ∈ {u, U }, x ∈{0, L}, and t > 0. (1.11)

Here d(x) are the vertical turbulent diffusion coefficient of u andU ; ν(x) is the sinking
velocity (ν(·) > 0) or the buoyant velocity (ν(·) < 0) of u and U .
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We first propose general boundary conditions that can includemodels in the chemo-
stat [see (1.8)] and the water column [see (1.9), (1.10), and (1.11)] as special cases.
Define the following operators: for N = R, S,

BN ,x [N ] =
{

−aN ,0Nx (0, t) + bN ,0N (0, t), x = 0, t > 0,

aN ,L Nx (L , t) + bN ,L N (L , t), x = L , t > 0,

and for w = U, u,

B
x [w] =

{
−a0[d(0)wx (0, t) − ν(0)w(0, t)] + b0w(0, t), x = 0, t > 0,

aL [d(L)wx (L , t) − ν(L)w(L , t)] + bLw(L , t), x = L , t > 0,

where aN ,x , bN ,x , ax , and bx are non-negative, for all N ∈ {R, S} and x ∈ {0, L}. In
this paper, we shall study the general model that includes the habitats in the unstirred
chemostat [see (1.8)] and in the water column [see (1.9), (1.10), and (1.11)]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt = (DR(x)Rx )x − fR
(
R, U

u

)
u − ωr R + ωs S, x ∈ (0, L), t > 0,

St = (DS(x)Sx )x − fS
(
S, U

u

)
u + ωr R − ωs S, x ∈ (0, L), t > 0,

Ut = (d(x)Ux −ν(x)U )x + fR
(
R, U

u

)
u+ fS

(
S, U

u

)
u − mU, x ∈ (0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + μ
(U

u

)
u − mu, x ∈ (0, L), t > 0,

BN ,x [N ] = cN ,x ≥ 0, N = R, S, x = 0 or L , t > 0,

B
x [w] = 0, w = U, u, x = 0 or L , t > 0,

w(x, 0) = w0(x) ≥ ( 	≡)0, w = R, S, U, u, x ∈ (0, L),

(1.12)
wherem ≥ 0.Wewill impose some assumptions on the boundary conditions in system
(1.12) as follows:

(H3) aN ,x , bN ,x ≥ 0 and aN ,x + bN ,x > 0 for all (N , x) ∈ {R, S} × {0, L}; also,
bN ,x > 0 for some (N , x) ∈ {R, S} × {0, L}.

(H4) m, ax , bx ≥ 0 and ax + bx > 0 for all x ∈ {0, L}. One of m, b0, bL is positive.
(H5) DR(x) ≡ DS(x) ≡ D(x) ∀ x ∈ [0, L], and aR,x = aS,x , bR,x = bS,x ,

∀ x ∈ {0, L}.
(H6) cN ,x > 0, for some (N , x) ∈ {R, S}×{0, L}. Moreover, if for some (N0, x0) ∈

{R, S} × {0, L} such that cN0,x0 > 0, then bN0,x0 > 0.

We point out the main distinction between this paper and the previous works in
Hsu et al. (2010, 2014). The main difficulties in mathematical analysis for the system
(1.12) and models in Hsu et al. (2010, 2014) are caused by the singularity in the ratio
U/u at the extinction steady state (R, S, U, u) = (R∗, S∗, 0, 0). Thus, standard tech-
niques such as linearization and bifurcation are not applicable. In Hsu et al. (2010),
strictly positive upper/lower solutions are constructed by exploiting the underlying
monotonicity of the limiting system. However, the construction requires the diffusion
rate to be relatively large or small, and the question of extinction/persistence is left
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open for intermediate diffusion rates. The authors in Hsu et al. (2014) pushed further
the results inHsu et al. (2010) and obtained a threshold result by defining, in an abstract
way, the threshold diffusion rate to be “the supremum of diffusion rates where a lower
solution can be constructed”. In both works (Hsu et al. 2010, 2014), it was essential
that the limiting system is monotone, as they are based on upper/lower solution argu-
ments. Since the general system (1.12) can not be reduced to a monotone system, the
arguments developed in Hsu et al. (2010, 2014) can not be applied to (1.12).

By contrast, we pursue amore fundamental approach here by studying the nonlinear
eigenvalue problem in the special positive cones of functions motivated by the ratio
dependence. The principal eigenvalue, given by a recent Krein–Rutman type theorem
involving two separate cones C ⊂ D due to Mallet-Paret and Nussbaum (2010), is
shown to characterize the threshold for persistence/extinction of the general system
(1.12). We also note that the previous constructions of upper/lower solution in Hsu
et al. (2010, 2014) are based on some scalar eigenvalue problems, which are defined
technically. Actually, one can construct another upper/lower solution for the limiting
system inHsu et al. (2010, 2014) using a nonlinear eigenvalue problem similar to (2.8)
in this paper, and one can easily obtains the threshold dynamics of the model in Hsu
et al. (2010), and same conclusions inHsu et al. (2014). Although homogeneous eigen-
value problems have been used before to find threshold parameters for the dynamics
of PDE models (Jin and Thieme 2014; Jin et al. 2016), this is the first application of
the Krein–Rutman theorem involving two cones to study population dynamics. Fur-
thermore, unlike previous works in phytoplankton models the mass conservation is
not assumed for the general system (1.12), and as a result the boundedness of solution
is proved in this paper separately. This paper is one of the the first attempts in char-
acterizing the threshold dynamics in ratio-dependent PDE systems and we expect the
methods in this paper to be applied to other PDE models with ratio-dependence.

2 Main results of system (1.12)

In this section, we state the main theorems of this paper, the proofs of which will
be given in the subsequent sections. Consider first the following linear cooperative
system modeling the available resources in a phytoplankton-free environment:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rt = (DR(x)Rx )x − ωr R + ωs S, x ∈ (0, L), t > 0,

St = (DS(x)Sx )x + ωr R − ωs S, x ∈ (0, L), t > 0,

BN ,x [N ] = cN ,x ≥ 0, N = R, S, x = 0 or L , t > 0,

w(x, 0) = w0(x), w = R, S, x ∈ (0, L).

(2.1)

The following result concerning the dynamics of the phytoplankton-free system
(2.1) is proved in Sect. 3.

Proposition 2.1 Suppose (H3), and one of (H5)–(H6) hold. Then system (2.1) admits a
unique positive steady-state solution (R∗(x), S∗(x)) which is globally asymptotically
stable among solutions with initial data in C([0, L]; R

2+). Furthermore, there exists
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C ≥ 1 independent of initial conditions (R0(x), S0(x)) such that

‖ (R(·, t), S(·, t)) ‖ ≤ C
(
1 + ‖R0(·), S0(·)‖

)
for all t ≥ 0.

Let X = C([0, L]; R
4+), D = C0([0, L], R

2+), and ≤D be the partial order in
C0([0, L]; R

2) generated by the cone D [see, e.g., (Smith 1995, Section 1.1)], i.e.

(R1(·), S1(·)) ≤D (R2(·), S2(·)) if R1(x)≤ R2(x) and S1(x)≤ S2(x)∀x ∈ [0, L].
(2.2)

From now on, (R∗(x), S∗(x)) stands for the unique positive steady-state solution of
system (2.1). We define next Q∗ to be the unique positive number so that

Q∗ = inf{Q > 0 : fR(R∗(x), Q) + fS(S∗(x), Q) − μ(Q)Q ≤ 0 in [0, L]}.
(2.3)

Remark 2.1 (i) Qmin < Q∗ < Q B , where Qmin and Q B are given by (H1) and (H2)
respectively.

(ii) By (H2), for any 0 < ε0 < Q B/Q∗ − 1, and for N = R, S,

fN (N , Q) > 0 for all N > 0 and 0 ≤ Q ≤ (1 + ε0)Q∗.

(iii) The definition of Q∗ in (2.3) is motivated by the ODE system (1.1). For sys-
tem (1.1), its phytoplankton-free equilibrium is (R, S, Q, u) = (R∗, S∗, Q∗, 0),
where

(
R∗, S∗) :=

(
DR(0) + ωs R(0) + ωs S(0)

D + ωr + ωs
,

DS(0) + ωr S(0) + ωr R(0)

D + ωr + ωs

)

, (2.4)

and Q∗ is uniquely determined by

fR
(
R∗, Q∗) + fS

(
S∗, Q∗) − μ

(
Q∗) Q∗ = 0. (2.5)

Biologically, Q∗ represents the quota that a species can obtainwhen the resources
concentration is at its long-term upper bound (R∗, S∗).

Theorem 2.1 Assume (H1), (H2), (H3), (H4) and one of (H5), (H6) hold. Then

(i) System (1.12) generates a semiflow in

Y =
{(

R0, S0, U 0, u0
)

∈ X : ∃Q̃ > 0 s.t. U 0(x) ≤ Q̃u0(x) ∀x ∈ [0, L]
}

,

(2.6)
in the sense that for each initial condition in Y, system (1.12) has a unique
classical solution (R, S, U, u) that exists for all t > 0. Moreover, the solution
satisfies (R(·, t), S(·, t), U (·, t), u(·, t)) ∈ Y for all t > 0.
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(ii) For each Q̄ > 0, the solution depends continuously on initial data in

YQ̄ :=
{(

R0, S0, U 0, u0
)

∈ Y : U 0(x) ≤ Q̄u0(x) for all x ∈ [0, L]
}

.

(iii) Let Q∗ ∈ (Qmin, Q B) be given by (2.3). Then the subset

Y1 =
{(

R0, S0, U 0, u0
)

∈ X : Qminu0(·) ≤ U 0(·) ≤ Q∗u0(·),
and

(
R0(·), S0(·)

)
≤D (R∗(·), S∗(·)) in [0, L]

}
. (2.7)

attracts all trajectories in Y.
(iv) The steady state (R∗(x), S∗(x), 0, 0) ∈ X attracts all trajectories in

{(
R0, S0, U 0, u0

)
∈ Y : u0 ≡ 0

}
.

Here (R∗(x), S∗(x)) is given in Proposition 2.1.

We further show the eventual boundedness of trajectories, which is essential for the
application of persistence theory.

Proposition 2.2 Suppose (H1)–(H4), and one of (H5)–(H6) hold. There exists a
constant C > 0 independent of initial conditions in Y such that for any solution
(R, S, U, u) of system (1.12), we have

lim sup
t→∞

‖(R(·, t), S(·, t), U (·, t), u(·, t))‖ ≤ C.

The boundedness of trajectories enables the use of persistence theory. It turns out
that the persistence/extinction of the phytoplankton species is characterized by the
principal eigenvalue �0 ∈ R of the following nonlinear eigenvalue problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
d(x)ϕ′(x) − ν(x)ϕ(x)

)′ + fR

(
R∗(x),

ϕ(x)
φ(x)

)
φ(x)

+ fS

(
S∗(x),

ϕ(x)
φ(x)

)
φ(x) + �ϕ(x) = 0, x ∈ (0, L),

(
d(x)φ′(x) − ν(x)φ(x)

)′ + μ
(

ϕ(x)
φ(x)

)
φ(x) + �φ(x) = 0, x ∈ (0, L),

B
x [w] = 0, for w = ϕ, φ, and x = 0, L .

(2.8)

The existence of the principal eigenvalue�0 of the nonlinear eigenvalue problem (2.8)
will be proved in Sect. 5.

Theorem 2.2 Under the hypothesis of Theorem 2.1, (2.8) has a principal eigenvalue
�0, characterized as the unique eigenvalue of (2.8) with a strictly positive eigen-
function. Furthermore, −�0 is the critical death rate of system (1.12) in the sense
that

(i) If m ≥ −�0, then (R∗(·), S∗(·), 0, 0) attracts all trajectories in Y.
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(ii) If m < −�0, then there exists σ > 0 independent of initial conditions in Y so
that whenever u0 	≡ 0,

lim inf
t→∞

[

inf
0≤x≤L

U (x, t)

]

≥ σ, and lim inf
t→∞

[

inf
0≤x≤L

u(x, t)

]

≥ σ, (2.9)

and (1.12) has at least one positive steady state.

Finally, we have the following result if we specialize to system (1.8), i.e. the model
of an unstirred chemostat.

Theorem 2.3 Assume (H1) and (H2). System (1.8) generates a semiflow in Y with a
critical diffusion rate d0 > 0 such that

(i) If d ∈ [d0,+∞) then the steady state (R∗(·), S∗(·), 0, 0) attracts all trajectories
in Y.

(ii) If d ∈ (0, d0), then there exists σ > 0 independent of initial conditions in Y so
that any solution of (1.8) with u0 	≡ 0 satisfies

lim inf
t→∞

[

inf
0≤x≤L

U (x, t)

]

≥ σ, and lim inf
t→∞

[

inf
0≤x≤L

u(x, t)

]

≥ σ.

If we assume in addition that

(H7) ωs + ∂ fR
∂ Q (R, Q) ≥ 0, and ωr + ∂ fS

∂ Q (S, Q) ≥ 0, for a.e. R ≥ 0, S ≥ 0, Q ≥ 0.

Then (ii) can be strengthened to

(ii’) If d ∈ (0, d0), then (1.8) has a unique positive steady state (R̂, Ŝ, Û , û) that
attracts all trajectories in Y such that u0 	≡ 0.

Remark 2.2 (i) Using m = 0 here and Theorem 2.2, we comment that in Theo-
rem 2.3 (i), �0 ≥ 0, and in Theorem 2.3 (ii), �0 < 0. In fact, �0 := �0(d)

depends on the diffusion coefficient d. We will show that �0 > 0 for d ∈
(d0,+∞), and �0 < 0 for d ∈ (0, d0) (see Lemma 7.1).

(ii) In the Discussion section, we will give practical examples of fR(R, Q) and
fS(S, Q) such that the inequalities in (H7) hold, where the parameters are in a
realistic parameter range.

We outline the rest of the paper as follows: In Sect. 3, we discuss the chemical
dynamics of the phytoplankton-free system and prove Proposition 2.1. In Sect. 4,
we prove the well-posedness results of Theorem 2.1. In Sect. 5, we adapt a nonlinear
version of Krein–Rutman theorem, due toMallet-Paret andNussbaum (2010), to study
the local stability of phytoplankton-free steady state (R∗(·), S∗(·), 0, 0). In Sect. 6, we
prove the eventual boundedness of trajectories (Sect. 6.1) and apply persistence theory
to prove the threshold dynamics contained in Theorem 2.2. In Sect. 7, we specialize
to the unstirred chemostat system (1.8) and prove Theorem 2.3. We close with some
discussion in Sect. 8.
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3 Dynamics of the phytoplankton-free system (2.1)

Recall that D = C0([0, L], R
2+) and ≤D is the partial order in C0([0, L]; R

2) defined
in (2.2). We first consider a slightly more general version of the phytoplankton-free
system (2.1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Rt = (DR(x)Rx )x − FR(x, R) − ωr R + ωs S, x ∈ (0, L), t > 0,

St = (DS(x)Sx )x − FS(x, S) + ωr R − ωs S, x ∈ (0, L), t > 0,

BN ,x [N ] = cN ,x ≥ 0, N = R, S, x = 0 or L , t > 0,

N (x, 0) = N 0(x), N = R, S, x ∈ (0, L).

(3.1)

Lemma 3.1 Suppose (H3), and one of (H5)–(H6) hold. For N = R, S, assume that

FN (·, 0) = 0 and
∂

∂ N
FN (·, N ) ≥ 0 ∀N ≥ 0. (3.2)

Then the following statements are valid.

(i) System (3.1) admits a unique positive steady-state solution (R∗∗
F (x), S∗∗

F (x)),
which is globally asymptotically stable among all non-negative solutions. Fur-
thermore, there exists a number C ≥ 1 independent of initial data (R0, S0) ∈
C([0, L]; R

2+) such that

‖(R(·, t), S(·, t))‖ ≤ C
(
1 + ‖(R0(·), S0(·))‖

)
for t ≥ 0.

(ii) If G N (·, N ) satisfies a similar condition as (3.2) for N = R, S, and

(G R(x, R), GS(x, S)) ≥D (FR(x, R), FS(x, S)), for all x ∈ [0, L], R, S ≥ 0,

then

(
R∗∗

G (x), S∗∗
G (x)

) ≤D
(
R∗∗

F (x), S∗∗
F (x)

)
, for every x ∈ [0, L], (3.3)

where (R∗∗
G (x), S∗∗

G (x)) is the unique steady-state solution of system (3.1)
with the the replacement of F by G. Additionally, if we further assume that
(G R(·, R), GS(·, S)) ≥D, 	≡ (FR(·, R), FS(·, S)), then (R∗∗

G (·), S∗∗
G (·)) �D

(R∗∗
F (·), S∗∗

F (·)).

Proof From the assumptions in (3.2), it is easy to see that system (3.1) is a cooperative
system. Let (R, S) = (0, 0), and

(R, S) =
{

C�0(x) (ωs, ωr ) if (H3) and (H5) hold,

C max(N ,x)∈{ cN ,x
bN ,x

} (ωs, ωr ) if (H3) and (H6) hold,

123



Single species growth consuming inorganic carbon with… 1787

where C ≥ 1
ωs

+ 1
ωr
, and  = {(N , x) ∈ {R, S} × {0, L}| bN ,x > 0} is nonempty,

due to assumption (H3); �0(x) being the unique positive solution to

⎧
⎪⎨

⎪⎩

(
DR(x)�0

x

)

x = 0, x ∈ (0, L),

−aR,0�
0
x (0) + bR,0�

0(0) = max{cR,0, cS,0},
aR,L�0

x (L) + bR,L�0(L) = max{cR,L , cS,L }.
(3.4)

To show the existence of �0(x), we apply Fredholm’s alternative. It remains to show
that �0(x) is uniquely determined by system (3.4) under the assumptions (H3) and
(H5). To this end, we assume that �0

1(x) and �0
2(x) solve system (3.4). Let �̄0(x) :=

�0
1(x) − �0

2(x). Then �̄0(x) satisfies

{(
DR(x)�̄0

x

)

x = 0, x ∈ (0, L),

−aR,0�̄
0
x (0) + bR,0�̄

0(0) = 0, aR,L�̄0
x (L) + bR,L�̄0(L) = 0.

(3.5)

Multiply (3.5) by �̄0 and integrate by parts, we have

∫ L

0
DR(x)

(
�̄0

x

)2 = [DR(x)�̄0
x (x)�̄0(x)] |L

0 ≤ 0.

This implies that �̄0
x ≡ constant. By the assumption (H3), (H5) and the boundary con-

dition of �̄0 in (3.4), we conclude that either �̄0(0) = 0 or �̄0(L) = 0, which ensures
that �̄0 ≡ 0. Thus, �0(x) is uniquely determined by system (3.4). It is not hard to see
that for all C ≥ 1

ωs
+ 1

ωr
, (R, S) and (R, S) forms a pair of strict sub- and superso-

lutions of (3.1). We can then conclude that the minimal and maximal steady states of
system (3.1) (with respect to ≤D) exist, which we denote by (Rmin

F (x), Smin
F (x)) and

(Rmax
F (x), Smax

F (x)) respectively. It remains to prove that

(
Rmin

F (x), Smin
F (x)

)
≡ (

Rmax
F (x), Smax

F (x)
)
. (3.6)

To this end, we let RF (x) = Rmax
F (x) − Rmin

F (x), SF (x) = Smax
F (x) − Smin

F (x). Then
(RF (x), SF (x)) ≥D (0, 0), and (RF (x), SF (x)) satisfies

⎧
⎪⎨

⎪⎩

(DR(x)(RF )x )x − h R(x)RF (x) − ωr RF (x) + ωs SF (x) = 0, x ∈ (0, L),

(DS(x)(SF )x )x − hS(x)SF (x) + ωr RF (x) − ωs SF (x) = 0, x ∈ (0, L),

BN ,x [NF ] = 0, N = R, S, x = 0 or L ,

(3.7)
where

h R(x) =
∫ 1

0

∂ FR

∂ R

(
x, τ Rmax

F (x) + (1 − τ)Rmin
F (x)

)
dτ ≥ 0,

hS(x) =
∫ 1

0

∂ FS

∂S

(
x, τ Smax

F (x) + (1 − τ)Smin
F (x)

)
dτ ≥ 0,
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and

BN ,x [NF ] =
{

−aN ,0(NF )x (0, t) + bN ,0NF (0, t), x = 0, t > 0,

aN ,L(NF )x (L , t) + bN ,L NF (L , t), x = L , t > 0.

��
Claim 3.1 The following results are valid:

(i) If maxx̃=0,L{bR,x̃ } > 0, then either RF ≡ 0 or maxx̃=0,L(−1)x̃/L R′
F (x̃) > 0.

(ii) If maxx̃=0,L{bS,x̃ } > 0, then either SF ≡ 0 or maxx̃=0,L(−1)x̃/L S′
F (x̃) > 0.

(iii) (−1)x̃/L N ′
F (x̃) = 0 for all (N , x̃) ∈ {R, S} × {0, L}.

Firstwe showClaim3.1(i). SupposebR,x̃ > 0 for some x̃ ∈ {0, L}, and RF 	≡ 0. Let
minx∈[0,L] RF (x) = RF (x0). If x0 ∈ (0, L), then we may apply the strong maximum
principle to the equation

{
(DR(x)(RF )x )x + [−h R(x) − ωr ]RF (x) = −ωs SF (x) ≤ 0, x ∈ (0, L),

BR,x [RF ] = 0, x = 0 or L ,

to conclude that RF (·) is constant on [0, L]. Since bR,x̃ > 0 for some x̃ ∈ {0, L}, we
deduce from the boundary conditions that in fact RF (·) ≡ 0, contradiction. Hence if
RF (·) 	≡ 0, then we must have x0 ∈ {0, L}. But then by Hopf’s Lemma (Friedman
1964, Sect. 2.5, Theorem 14), we have (−1)x̃/L R′

F (x0) > 0 for some x0 ∈ {0, L}.
This proves Claim 3.1(i). The proof of Claim 3.1(ii) is analogous and is skipped.

Before proving (iii), we first show that

(−1)x̃/L N ′
F (x̃) ≥ 0 for all (N , x̃) ∈ {R, S} × {0, L}. (3.8)

If aN ,x̃ > 0, for some (N , x̃) ∈ {R, S}×{0, L}, then (−1)x̃/L N ′
F (x̃) = bN ,x̃

aN ,x̃
NF (x̃) ≥

0. Alternatively, if aN ,x̃ = 0, then NF (x̃) = 0 is a boundary minimum so that again
(−1)x̃/L N ′

F (x̃) ≥ 0. Thus, (3.8) holds. For Claim 3.1(iii), we add the first two equa-
tions in (3.7) and integrate over x ∈ [0, L] to obtain

0 ≤
∫ L

0
[h R(x)RF (x) + hS(x)SF (x)]dx =

∑

N=R,S

∑

x̃=0,L

−DN (x̃)(−1)x̃/L N ′
F (x̃).

By (3.8), each term on the right is non-positive and thus identically zero. This yields
(iii) and finishes the proof of Claim 3.1.

Now, by assumption (H3), either maxx̃=0,L{bR,x̃ } > 0 or maxx̃=0,L{bS,x̃ } > 0. By
Claim 3.1, either RF (·) ≡ 0 or SF (·) ≡ 0. Plugging into (3.7) we must have RF (·) ≡
SF (·) ≡ 0. This proves (3.6). By the compactness of forward trajectories, we see
that the unique steady state (R∗∗

F (·), S∗∗
F (·)) of system (3.1) is globally asymptotically

stable among all non-negative solutions (Jiang 1994, Theorem D). This proves Part
(i).

For Part (ii), let (R∗∗
G , S∗∗

G ) be the unique steady state of (3.1) with FR, FS being
replaced with G R, GS . Then (R∗∗

G , S∗∗
G ) is a strict subsolution of (3.1). Since the latter

123



Single species growth consuming inorganic carbon with… 1789

has a unique, globally asymptotically stable steady state (R∗∗
F , S∗∗

F ), it follows by
comparison that (3.3) holds. ��

Proof of Proposition 2.1 This is a special case of Lemma 3.1(i), when FR ≡ FS ≡ 0.
��

4 Well-posedness results

In this section, we shall provide the proof of Theorem 2.1.

4.1 Estimates

Recall that X = C0([0, L]; R
4+), Y and Y1 are defined in (2.6) and (2.7). Also Q∗ is

given in (2.3) and (R∗(·), S∗(·)) is the unique steady state of (2.1) (see Proposition
2.1). Note that Y1 ⊆ Y ⊆ X.

Lemma 4.1 Suppose (H3), and one of (H5)–(H6) hold. Let

(R(x, t), S(x, t), U (x, t), u(x, t))

be a solution of (1.12) for t ∈ [0, τ ). Then

(i) If (R0(·), S0(·)) ≤D (R∗(·), S∗(·)), then (R(·, t), S(·, t)) ≤D (R∗(·), S∗(·)) for
all t ∈ [0, τ ).

(ii) There exists a constant C ≥ 1 independent of τ and initial conditions

(
R0(·), S0(·), U 0(·), u0(·)

)
∈ Y

such that

sup
t∈[0,τ )

‖(R(·, t), S(·, t))‖ ≤ C
(
1 + ‖

(
R0(·), S0(·)

)
‖
)

.

Moreover, if τ = +∞, then

lim sup
t→∞

(R(x, t), S(x, t)) ≤D (R∗(x), S∗(x))

uniformly for x ∈ [0, L]. i.e. for each ε > 0 there exists t0 > 0 such that

R(x, t) ≤ R∗(x) + ε and S(x, t) ≤ S∗(x) + ε

for x ∈ [0, L] and t ≥ t0.
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Proof Let (R, S, U, u) be a solution of (1.12) for t ∈ [0, τ ) with initial data(
R0, S0, U 0, u0

) ∈ Y. By comparison principle, we have

(R(x, t), S(x, t)) ≤D

(
R̂(x, t), Ŝ(x, t)

)
,

where (R̂(x, t), Ŝ(x, t)) is the unique solution to (2.1) with initial conditions
(R0(x), S0(x)). The rest follows from Proposition 2.1. ��
Lemma 4.2 Suppose the hypotheses of Theorem 2.1 hold. Let

(R(x, t), S(x, t), U (x, t), u(x, t))

be a solution of (1.12) for t ∈ [0, τ ), with initial data
(
R0, S0, U 0, u0

) ∈ Y. Then

(i) It holds that

inf
x∈[0,L]

U (x, t)

u(x, t)
≥ min

{

Qmin, inf[0,L]
U 0(x)

u0(x)

}

for all t ∈ [0, τ ). (4.1)

(ii) There exists Q ∈ [
Q∗,+∞) depending on ‖(R0, S0)‖ and ‖U 0/u0‖ such that

sup
x∈[0,L]

U (x, t)

u(x, t)
≤ Q for all t ∈ [0, τ ). (4.2)

Moreover, if τ = +∞, then

lim inf
t→∞

[

inf
x∈[0,L] (U (x, t) − Qminu(x, t))

]

≥ 0 (4.3)

and for each Q > Q∗,

lim sup
t→∞

[

sup
x∈[0,L]

(U (x, t) − Qu(x, t))

]

≤ 0. (4.4)

Furthermore, if ‖u(·, t)‖ is bounded uniformly in t > 0, then (4.4) holds for Q = Q∗.

Proof of Lemma 4.2 The following arguments are motivated by Grover (2011) and
Mei et al. (2016). Let Q be a number in [0, Qmin] to be specified later. Then one can
write

μ

(
U (x, t)

u(x, t)

)

= μ(Q) + ξ(x, t; Q)

(
U (x, t)

u(x, t)
− Q

)

where for each Q ≥ 0,

ξ(x, t; Q) =
∫ 1

0
μ′

(

s
U (x, t)

u(x, t)
+ (1 − s)Q

)

ds > 0. (4.5)
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Let H(x, t) = U (x, t) − Qu(x, t). Then μ

(
U

u

)

= μ(Q) + ξ(x, t; Q)
H

u
, and

⎧
⎪⎨

⎪⎩

Ht − (d(x)Hx − ν(x)H)x + ξ(x, t; Q)Q H + m H

= −μ(Q)Q u + fR
(
R, U

u

)
u + fS

(
S, U

u

)
u ≥ 0, for x ∈ [0, L], t ∈ [0, τ ),

B
x [H ] = 0, x = 0 or L , for t ∈ [0, τ ),

where we used the fact that fN ≥ 0 for N = R, S andμ(Q) ≤ 0 since Q ∈ [0, Qmin].
Taking

Q := min

{

Qmin, inf[0,L]
U 0(x)

u0(x)

}

.

Then H(x, 0) = U 0(x)− Qu0(x) ≥ 0 and we have, by maximum principle for linear
parabolic equations, H(·, t) ≥ 0 in [0, L] for all t ∈ [0, τ ). This proves (4.1).

Consider the case where τ = ∞. We are going to show (4.3). For this purpose, we
take Q = Qmin. Let

ρ0(x, t) = exp

(

−(m + σ0)t +
∫ x

0

ν(y)

d(y)
dy

)

,

where σ0 satisfies

0 < σ0 < ξ(x, t; Qmin)Qmin, ∀ x ∈ [0, L], t ∈ [0,∞).

Define H(x, t) = −Bρ0(x, t), where B > 0 is chosen such that H(x, 0) =
−Bρ0(x, 0) ≤ H(x, 0), for x ∈ [0, L]. Then H(x, t) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ht − (
d(x)H x − ν(x)H

)

x + ξ(x, t; Qmin)QminH + m H

= [ξ(x, t; Qmin)Qmin − σ0]H(x, t) ≤ 0, for x ∈ [0, L], t > 0,

B
x [H ] = bx H(x, t) ≤ 0, x = 0 or L , for t > 0,

H(x, 0) ≤ H(x, 0) = U 0(x) − Qminu0(x), for x ∈ [0, L].

By comparison principle, H(x, t) ≥ H(x, t). Using the fact that H(·, t) → 0 uni-
formly in x as t → ∞, we obtain (4.3). It remains to show (4.2) and (4.4).

Next, we show (4.2). Fix a solution (R, S, U, u) of (1.12) that exists up to time

τ ∈ (0,∞]. By Lemma 4.1, there exists a number Q ≥ sup[0,L]
U0(x)

u0(x)
depending

possibly on initial data (R0, S0), such that

fR(R(x, t), Q)+ fS(S(x, t), Q)−μ(Q)Q ≤0 for x ∈[0, L], t ∈[0, τ ). (4.6)

Then one can write

fN

(

N (x, t),
U (x, t)

u(x, t)

)

= fN (N (x, t), Q) + ϑN (x, t; Q)

(
U (x, t)

u(x, t)
− Q

)
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for N = R, S, where

ϑN (x, t; Q) =
∫ 1

0

∂ fN

∂ Q

(

N (x, t), s
U (x, t)

u(x, t)
+ (1 − s)Q

)

ds ≤ 0;

and also

μ

(
U (x, t)

u(x, t)

)

= μ(Q) + ξ(x, t; Q)

(
U (x, t)

u(x, t)
− Q

)

,

where ξ(x, t; Q) is given in (4.5). Then H̃ := U − Qu satisfies the differential
inequality

H̃t −
(

d(x)H̃x − ν(x)H̃
)

x
+ m H̃

= fR

(

R,
U

u

)

u + fS

(

S,
U

u

)

u − μ

(
U

u

)

Q u

= [ϑR(x, t; Q) + ϑS(x, t; Q) − ξ(x, t; Q)Q]
(

U (x, t)

u(x, t)
− Q

)

u

+[ fR(R, Q) + fS(S, Q) − μ(Q)Q]u
≤ Ẽ(x, t)H̃ ,

where we used (4.6), and

Ẽ(x, t) = ϑR(x, t; Q) + ϑS(x, t; Q) − ξ(x, t; Q)Q < 0,

due to (H1) and (H2). Since H̃ also satisfies the homogeneous boundary condition

B
x [H̃ ] = 0, for x = 0 or L , t ∈ [0, τ ),

and, by our choice of Q, H̃(x, 0) ≤ 0, we deduce by comparison that U (x, t) −
Qu(x, t) = H̃(x, t) ≤ 0 for all x ∈ [0, L] and t ∈ [0, τ ). This proves (4.2).

Finally, we prove (4.4). From (2.3), it follows that for each η > 0, there exists an
ε > 0 such that for x ∈ [0, L]

fR(R∗(x) + ε, Q∗ + η) + fS(S∗(x) + ε, Q∗ + η) − μ(Q∗ + η)(Q∗ + η) ≤ 0.

(4.7)

By Lemma 4.1, we may assume without loss (by translation in t) that

R(x, t) ≤ R∗(x) + ε and S(x, t) ≤ S∗(x) + ε for all x ∈ [0, L], t ≥ 0.

(4.8)
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Given a solution (R, S, U, u), define by mean value theorem the functions

ϑN (x, t; Q∗ + η) =
∫ 1

0

∂ fN

∂ Q

(

N (x, t), s
U (x, t)

u(x, t)
+ (1 − s)(Q∗ + η)

)

ds ≤ 0,

and

ξ(x, t; Q∗ + η) =
∫ 1

0
μ′

(

s
U (x, t)

u(x, t)
+ (1 − s)(Q∗ + η)

)

ds > 0,

so that

fN

(

N ,
U

u

)

= fN (N , Q∗ + η) + ϑN (x, t; Q∗ + η)

(
U

u
− Q∗ − η

)

for N = R, S, and

μ

(
U

u

)

= μ(Q∗ + η) + ξ(x, t; Q∗ + η)

(
U

u
− Q∗ − η

)

.

Then Hη := U − (Q∗ + η)u satisfies

(Hη)t − (
d(x)(Hη)x − ν(x)Hη

)

x + m Hη

= fR

(

R,
U

u

)

u + fS

(

S,
U

u

)

u − μ

(
U

u

)

(Q∗ + η)u

= [ϑR(x, t; Q∗ + η) + ϑS(x, t; Q∗ + η)

− ξ(x, t; Q∗ + η)(Q∗ + η)]
(

U

u
− Q∗ − η

)

u

+[ fR(R, Q∗ + η) + fS(S, Q∗ + η) − μ(Q∗ + η)(Q∗ + η)]u
≤ E(x, t)Hη,

where

E(x, t) = ϑR(x, t; Q∗ + η) + ϑS(x, t; Q∗ + η) − ξ(x, t; Q∗ + η)(Q∗ + η) < 0

by (4.7) and (4.8). Hence we may once again conclude by comparison with H(x, t) =
Bρ0(x, t) that

lim sup
t→∞

{

sup
x∈[0,L]

[U (x, t) − (Q∗ + η)u(x, t)]
}

≤ 0, for all η > 0.

This proves that (4.4) holds for all Q > Q∗. The last claim follows by letting η ↘ 0,
which is possible if ‖u(·, t)‖ is bounded uniformly in t . ��
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Corollary 4.1 Suppose the hypothesis of Theorem 2.1 hold. Let

(R(x, t), S(x, t), U (x, t), u(x, t))

be a solution of (1.12) for t ∈ [0, τ ). If the initial data satisfies
(
R0, S0, U 0, u0

) ∈ Y
(resp. Y1), then (R(·, t), S(·, t), U (·, t), u(·, t)) ∈ Y (resp. Y1) for all t ∈ [0, τ ).

Proof It suffices to show that if (R0, S0, U0, u)) ∈ Y1, then (R, S, U, u) ∈ Y1
for all t > 0, for the rest of the corollary follows immediately from Lemma 4.2.
Note that (R0, S0) ≤D (R∗, S∗) and U0 − Q∗u0 ≤ 0, and Lemma 4.1 says that
(R(·, t), S(·, t) ≤D (R∗, S∗) for all t > 0. Hence one may actually take η = 0 in the
proof of (4.4) to show that H0 := U − Q∗u ≤ 0 for all x and t . ��

4.2 Proof of Theorem 2.1

Proof of Theorem 2.1 We rewrite μ, fN (N = R, S) as follows:

μ̃(U, u) =
{
0 when u = 0,
μ(U/u)u when u > 0,

(4.9)

and

f̃N (N , U, u) =
{
0 when u = 0,
fN (N , U/u)u when u > 0,

(4.10)

Then (1.12) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rt = (DR(x)Rx )x − f̃ R(R, U, u) − ωr R + ωs S, x ∈ (0, L), t > 0,

St = (DS(x)Sx )x − f̃S(S, U, u) + ωr R − ωs S, x ∈ (0, L), t > 0,

Ut =(d(x)Ux −ν(x)U )x + f̃ R(R, U, u)+ f̃S(S, U, u)−mU, x ∈ (0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + μ̃(U, u)u − mu, x ∈ (0, L), t > 0,

BN ,x [N ] = cN ,x ≥ 0, N = R, S, x = 0 or L , t > 0,

B
x [w] = 0, w = U, u, x = 0 or L , t > 0,

w(x, 0) = w0(x) ≥ ( 	≡)0, w = R, S, U, u, x ∈ (0, L).

(4.11)
Observe that μ̃ and f̃N (N = R, S), when regarded as mappings inY, are Lipschitz

continuous. It follows from Lemma 4.2 and (Henry 1981, Theorem 3.3.3) that for
each initial condition

(
R0, S0, U 0, u0

) ∈ Y, there exists τ > 0 and a unique solution
(R, S, U, u) of (4.11) in [0, τ ) satisfying (R(·, t), S(·, t), U (·, t), u(·, t)) ∈ Y. Next
we claim that every solution of (1.12) with initial condition in Y exists for all time,
i.e. τ = +∞. Observe that by Lemmas 4.1 and 4.2, ‖(R, S)‖ and the ratio ‖U/u‖
remains bounded uniformly in t ∈ [0, τ ). Therefore if τ < +∞, then we must have
limt↗τ ‖(U (·, t), u(·, t))‖ = +∞. However, by regarding the equations for (U, u) in
(1.12) as a linear equation with bounded coefficients, we deduce that

sup
[0,τ )

‖(U (·, t), u(·, t))‖ < +∞ if τ < +∞.
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This contradiction proves that τ = +∞, i.e. solutions to system (1.12) exists for all
time. This proves (i).

For (ii), fix Q̄ > Q∗ and C0 > 0, then there is Q̂ � 1 such that any initial
condition in {(R, S, U, u) ∈ YQ̄ : ‖(R, S)‖ ≤ C0} determines uniquely a trajectory
(R(·, t), S(·, t), U (·, t), u(·, t)) inYQ̂ , whereYQ̄ is defined in Theorem2.1(ii). So that

we may use the Lipschitz dependence of μ̃, f̃N defined at the beginning of the proof to
show that solutions depends continuously in their initial conditions in {(R, S, U, u) ∈
YQ̄ : ‖(R, S)‖ ≤ C0}. Since C0 > 0 is arbitrary, we have proved (ii).

Finally, (iii) and (iv) follow from (4.3) and Proposition 2.1 respectively. ��

5 A nonlinear eigenvalue problem

We will use a recent generalization of Krein–Rutman theorem involving two different
cones due to Mallet-Paret and Nussbaum (2010). We start by giving some notations.

Let (X̃, ‖ · ‖) be a normed linear space (or NLS) over R. We call a subset C ⊂ X̃ a
cone if (i) C is convex, (ii) tC ⊂ C for all t ≥ 0, and (iii) C ∩ (−C) = {0}. A cone C
is said to be solid if it has non-empty interior. It is normal if there exists M > 0 such
that ‖x‖ ≤ M‖y‖ whenever x ≤C y.

If C is a cone and also a complete metric space in the metric induced by the norm
on X̃, we call C a complete cone. A cone C in an NLS (X̃, ‖ · ‖) induces a partial
ordering ≤C on X̃ by x ≤C y if and only if y − x ∈ C . If C is a solid cone, we say
that x �C y if and only if y − x ∈ IntC . Observe that if C is a solid cone, 0 �C x
and 0 �C y, then t x �C y for some t > 0.

A mapping T : C → C is homogeneous of degree one if, for each t ≥ 0 and each
x ∈ C ,

T(t x) = tT(x).

Let D ⊂ X̃ be another cone such that C ⊂ D. A mapping T : C → C is D-order-
preserving ifT(x) ≤D T(y)whenever x, y ∈ C satisfy x ≤D y. Here≤D is the partial
order generated by the cone D. If D is a solid cone, we say that T is D-strongly-order-
preserving if T(x) �D T(y) whenever x, y ∈ C satisfy x ≤D y and x 	= y. Recall
also the Bonsall cone spectral radius (see Mallet-Paret and Nussbaum 2010, 2002;
Thieme 2016)

r̃C (T) := lim
m→∞ ‖Tm‖1/m

C = inf
m≥1

‖Tm‖1/m
C ,

where ‖Tm‖C := sup{‖Tm(x)‖ : x ∈ C and ‖x‖ ≤ 1}. We impose the following:

(C) Let C ⊂ D be complete cones in an NLS (X̃, ‖·‖), D be normal, andT : C → C
be (i) continuous, (ii) compact, (iii) homogeneous of degree one, and (iv) D-order-
preserving.

Theorem 5.1 (Mallet-Paret and Nussbaum 2010, Theorem 4.9) Assume (C) holds. If
the Bonsall cone spectral radius satisfies r̃C (T) > 0, then there is v ∈ C\{0} such
that Tv = r̃Cv.
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Proof This is a special case of (Mallet-Paret and Nussbaum 2010, Theorem 4.9), by
setting the operator g in the statement of the theorem to be zero. ��
Corollary 5.2 Assume (C) holds. If, in addition, D is a solid cone andT is D-strongly-
order-preserving, then

(a) r̃ = r̃C (T) > 0 and there is a non-zero eigenvector x̃ ∈ C ∩ int D such that

Tx̃ = r̃ x̃ .

(b) If x ′ ∈ C is an eigenvector of T, then x ′ ∈ span{x̃} and Tx ′ = r̃ x ′.

Proof Take any y0 ∈ C\{0}, then Ty0 �D 0 and hence Ty0 ≥D r0y0 for some
r0 > 0 and hence r̃ = r̃C (T) ≥ r0 > 0. It then follows from Theorem 5.1 that
T x̃ = r̃ x̃ for some non-zero eigenvector x̃ ∈ C\{0}. Moreover, x̃ ∈ C ∩ Int D since
T is D-strongly-order-preserving. This proves (a).

Next, we show (b). First, let x ′ ∈ C\{0} be an eigenvector of r̃ , i.e. Tx ′ = r̃ x ′. We
have c1 := inf{c > 0 : x ′ ≤D cx̃} is positive. By monotonicity of T,

x ′ = 1

r̃
Tx ′ ≤D

1

r̃
T(c1 x̃) = c1 x̃ (5.1)

By definition of c1, we see that Tx ′ �D T(c1 x̃) is impossible. Hence, by D-strongly-
order-preserving property of T, equality holds in (5.1). In particular, x ′ = c1 x̃ . This
proves that r̃ is simple.

It remains to show that r̃ is the unique eigenvalue of T corresponding to an eigen-
vector in C\{0}. Suppose Tx ′ = r ′x ′, for some r ′ ∈ C and x ′ ∈ C\{0}. By definition
of T and the cone C , it must be the case that r ′ ∈ R. As Tx ′, x ′ ∈ C\{0} and
C ∩ (−C) = {0}, we must have r ′ ≥ 0. Also, T is D-strongly-order-preserving, so
that r ′ > 0 and x ′ ∈ C ∩ Int D. In particular x̃, x ′ ∈ C ∩ Int D and there are positive
constants c2, c3 such that c2 x̃ �D x ′ �D c3 x̃ . Applying Tn , we have

c2r̃ n x̃ ≤D (r ′)n x ′ ≤D c3r̃ n x̃ for all n ≥ 1.

This proves that r ′ = r̃ and completes the proof of assertion (b). ��
The following result is concerned with the existence of the principal eigen-

value of the nonlinear eigenvalue problem (2.8). From this point onwards, let D =
C0([0, L], R

2+) and

C = {(U, u) ∈ D : Qminu(x) ≤ U (x) ≤ Q∗u(x) for x ∈ [0, L]},

where Q∗ is given in (2.3). It is clear that both are complete cones and that D is both
normal and solid.

Lemma 5.1 Suppose the hypotheses of Theorem 2.1 hold. For each d(x) > 0 and
ν(x) ≥ 0, the eigenvalue problem (2.8) admits a principal eigenvalue �0 correspond-
ing to which there is a strongly positive eigenfunction (ϕ0(x), φ0(x)) �D 0.
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Proof of Lemma 5.1 We first consider the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ut =(d(x)Ux −ν(x)U )x + fR
(
R∗(x), U

u

)
u+ fS

(
S∗(x), U

u

)
u, x ∈(0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + μ
(U

u

)
u, x ∈ (0, L), t > 0,

B
x [w] = 0, w = U, u, x = 0 or L , t > 0,

w(x, 0) = w0(x) ≥ ( 	≡)0, w = U, u, x ∈ (0, L),

(5.2)
where (R∗(x), S∗(x)) is given by Proposition 2.1. Substituting U (x, t) = e−�tϕ(x),
and u(x, t) = e−�tφ(x) into (5.2), we obtain the associated nonlinear eigenvalue
problem (2.8).

By an argument analogous to Theorem 2.1, one may deduce that (5.2) generates
a semiflow �t on C . It is easy to see that for all t > 0, �t is continuous, compact
and homogeneous of degree one. To apply Corollary 5.2, we need to show that for
each t > 0, �t : C → C is D-strongly-order-preserving. For this purposes, suppose
(U1, u1) <D (U2, u2) (i.e. (U1, u1) ≤D (U2, u2) but (U1, u1) 	= (U2, u2)). Then
by rewriting fR, fS, μ as in (4.9) and (4.10), one can deduce that (U2 − U1, u2 −
u1) satisfies a linear cooperative system, whose coefficients are L∞ bounded by the
fact that (Ui , ui ) ∈ C for i = 1, 2. By the (strong) maximum principle for linear
cooperative system (Protter and Weinberger 1984), the semiflow is D-strongly-order-
preserving. Hence for each t > 0, we may apply Corollary 5.2 to the operator �t :
C → C to obtain r̃(t) and (ϕ(t), φ(t)) ∈ C ∩ Int D with ‖(ϕ(t), φ(t))‖ = 1 such that

�t (ϕ(t), φ(t)) = r̃(t)(ϕ(t), φ(t)).

��
Claim 5.1 t−1 log r̃(t) and (ϕ(t), φ(t)) are independent of t > 0.

To this end, we take tn = 2−n . Now, for any 0 ≤ n ≤ m, observe that

�tn (ϕ(tm), φ(tm)) = (r̃(tm))tn/tm (ϕ(tm), φ(tm))

so that (ϕ(tm), φ(tm)) is an eigenfunction of�tn in C as well. As Corollary 5.2 asserts
that there is only one possible normalized eigenfunction in C , we must then have
(ϕ(tm), φ(tm)) = (ϕ(tn), φ(tn)) and r̃(2−n) = [r̃(2−m)]2m−n

. Thus Claim 5.1 holds
for all dyadic numbers t = k2−n for k, n ∈ N. Finally, Claim 5.1 follows by continuity.

Finally, we define
�0 := −t−1 log r̃(t) ≡ − log r̃(1),

where r̃(1) is the Bonsall cone spectral radius of �1 : C → C , so that �0 ∈ R is the
principal eigenvalue of (2.8). ��

6 Threshold dynamics of system (1.12)

In Sect. 6.1, we prove the eventual boundedness of trajectories for system (1.12). In
Sect. 6.2, we apply the results of Sect. 5 and persistence theory to prove Theorem 2.2.
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6.1 Eventual boundedness of solutions

In this subsection we give a proof of Proposition 2.2.

Proof of Proposition 2.2 For each (�R(x), �S(x)) ∈ C([0, L]; R
2+), consider the

following eigenvalue problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
d(x)ϕ′(x) − ν(x)ϕ(x)

)′ + fR

(
�R(x),

ϕ(x)
φ(x)

)
φ(x)

+ fS

(
�S(x),

ϕ(x)
φ(x)

)
φ(x) − mϕ(x) + �ϕ(x) = 0, x ∈ (0, L),

(
d(x)φ′(x) − ν(x)φ(x)

)′ + μ
(

ϕ(x)
φ(x)

)
φ(x) − mφ(x) + �φ(x) = 0, x ∈ (0, L),

B
x [w] = 0, w = ϕ, φ, x = 0 or L .

(6.1)
Let (R∗(x), S∗(x)) be given by Proposition 2.1. We recall the definition of Q∗ from
(2.3). ��

Claim 6.1 Let condition (H4) hold, and σ1 be the principal eigenvalue of the eigen-
value problem

{(
d(x)φ′(x) − ν(x)φ(x)

)′ − mφ(x) + σφ(x) = 0, x ∈ (0, L),

B
x [φ] = 0, x = 0 or L .

(6.2)

Then σ1 > 0.

It is easy to see that φ0(x) = exp
(∫ x

0
ν(y)
d(y)

)
dy > 0 satisfies

{(
d(x)φ′

0(x) − ν(x)φ0(x)
)′ − mφ0(x) = −mφ0(x) ≤ 0, x ∈ (0, L),

B
x [φ0] = bxφ0(x) ≥ 0, x = 0 or L ,

such that one of the inequalities is strict (due to (H4)), i.e. φ0 is a strict supersolution.
Then Claim 6.1 follows from (Amann and López-Gómez 1998, Theorem 2.4).

Claim 6.2 There exists (�R(x),�S(x)) ∈ C([0, L]; R
2+) satisfying

{
(0, 0) �D (�R(x),�S(x)) �D (R∗(x), S∗(x)), ∀ x ∈ [0, L],
BN ,x [�N (x)] = cN ,x , N = R, S, x = 0 or L .

such that if we denote the corresponding principal eigenvalue and eigenfunction of
(6.1) by �̄�

0 and (ϕ̄�
0 , φ̄�

0 ) respectively, then �̄�
0 > 0.

For (�R(·),�S(·)) ≤D (R∗(·), S∗(·)), ∀ x ∈ [0, L], we can use the same
arguments in Lemma 5.1 to show that the eigenvalue problem (6.1) admits a prin-
cipal eigenvalue �̄�

0 := �̄0(�R(x),�S(x)) corresponding to which there is a
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strongly positive eigenfunction (ϕ̄�
0 (x), φ̄�

0 (x)) satisfying Qminφ̄
�
0 (x) ≤ ϕ̄�

0 (x) ≤
Q∗φ̄�

0 (x) for x ∈ [0, L]. Further, we can use compactness arguments to show that

�̄0(�R(x),�S(x)) → σ1 > 0 as (�R(x),�S(x)) → (0, 0) in C
(
[0, L]; R

2+
)

,

where σ1 is the principal eigenvalue of (6.2). This proves Claim 6.2.
By Theorem 2.1(iii), Y1 is globally attracting, so given a solution (R, S, U, u) of

(1.12), we may assume without loss (by replacing t with t + C) that

(R(x, t), S(x, t)) ≤D 2(R∗(x), S∗(x)), ∀ x ∈ [0, L], t ≥ 0, (6.3)

and that

Qminu(x, t) − 1 ≤ U (x, t) ≤ 2Q∗u(x, t) + Q∗, ∀ x ∈ [0, L], t ≥ 0, (6.4)

where Q∗ is given in (2.3). Let

M(t) = max{‖U (·, t)‖, ‖u(·, t)‖}.

Claim 6.3 There exists M1 > 1 such that if M(t1) = M1, then

(R(x, t), S(x, t)) ≤D (�R(x),�S(x)), ∀ x ∈ [0, L], t ∈ [t1 + 2, t1 + 3].

We will specify M1 later. To prove Claim 6.3, we first note that if M(t1) = M1, then

either ‖U (·, t1)‖ = M1 or ‖u(·, t1)‖ = M1.

Regarding fN (N , U
u ) and μ(U

u ) as the given functions, and using the boundedness
of U

u , R, and S, we may apply the parabolic Harnack inequality (Lieberman 1996,
Theorem 7.36) to deduce that

inf[0,L]×[t1+1,t1+3] U (x, t) ≥ C1M1 or inf[0,L]×[t1+1,t1+3] u(x, t) ≥ C1M1, (6.5)

for some C1 > 0 independent of M1. By (6.4) and (6.5), it follows that

inf[0,L]×[t1+1,t1+3] U (x, t) ≥ C2M1 − 1 and inf[0,L]×[t1+1,t1+3] u(x, t) ≥ C2M1 − 1,

where C2 = C1 min{Qmin, 1/(2Q∗)} is again independent of M1.
Fix a smooth function 0 ≤ ζ(t) ≤ 1 satisfying

ζ(t) =
{
1, for t ≤ t1 + 1,
0, for t ≥ t1 + 2,
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and define

(R̄(x, t), S̄(x, t)) := ζ(t) · 2(R∗(x), S∗(x)) + (1 − ζ(t))(�R(x),�S(x)).

We claim that, if M1 is sufficiently large (affecting U, u which are regarded as given
functions), then (R̄, S̄) is a supersolution of

⎧
⎪⎨

⎪⎩

Rt = (DR(x)Rx )x − fR(R, U
u )u − ωr R + ωs S, x ∈ (0, L), t1 + 1 ≤ t ≤ t1 + 3,

St = (DS(x)Sx )x − fS(S, U
u )u + ωr R − ωs S, x ∈ (0, L), t1 + 1 ≤ t ≤ t1 + 3,

BN ,x [N ] = cN ,x , N = R, S, x = 0 or L , t > 0.

To this end, we fix by Remark 2.1(ii) a constant ε0 > 0 so that for N = R, S,

fN (N , Q) > 0 for 0 < N ≤ 2 sup
x∈(0,L)

N∗(x) and Q ∈ [0, Q∗(1 + ε0)]. (6.6)

Next, observe that for N = R, S,

BN ,x [N̄ (x, t)] = 2ζ(t)BN ,x [N∗(x)] + (1 − ζ(t))BN ,x [�N (x)]
= 2ζ(t)cN ,x + (1 − ζ(t))cN ,x ≥ cN ,x .

Using (6.4),

U

u
≤ Q∗

(

1 + 1

u

)

≤ Q∗(1 + ε0) in (0, L) × (t1 + 1, t1 + 3),

provided that M1 ≥ 1
C2

(
1
ε0

+ 1
)
, where ε0 is given in (6.6). Since (R∗(x), S∗(x))

satisfies (2.1), we have

R̄t − (
DR(x)R̄x

)

x + fR

(

R̄,
U

u

)

u + ωr R̄ − ωs S̄

= ζ ′(t)(2R∗(x) − �R(x)) + fR

(

R̄,
U

u

)

u

+(1 − ζ(t))[(−DR(x)�′
R(x))′ + ωr�R(x) − ωs�S(x)]

≥ −C3 + fR(�R(x), Q∗(1 + ε0))) ·
[

inf[0,L]×[t1+1,t1+3] u(x, t)

]

≥ −C3 + C4M1 ≥ 0,

where C3 > 0 is some constant independent of M1, and, by (6.6),

C4 := C2 inf
x∈(0,L)

fR(�R(x), Q∗(1 + ε0))
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is positive and independent of M1 ≥ 1
C2

(
1
ε0

+ 1
)
; and we have chosen M1 larger so

that M1 ≥ C3/C4. Similarly,

S̄t − (
DS(x)S̄x

)

x + fS

(

S̄,
U

u

)

u − ωr R̄ + ωs S̄

≥ −C5 + C6M1 ≥ 0,

for someC5 > 0 andC6 > 0 and by choosing M1 ≥ C5/C6. By comparison principle,
it follows that

(R(x, t), S(x, t)) ≤D (R̄(x, t), S̄(x, t)), ∀ x ∈ [0, L], t ∈ [t1 + 1, t1 + 3].

In particular,

(R(x, t), S(x, t)) ≤D (�R(x),�S(x)), ∀ x ∈ [0, L], t ∈ [t1 + 2, t1 + 3].

This proves Claim 6.3.

Claim 6.4 Let M1 be given by Claim 6.3.

(i) There exists t ′k → ∞ such that M(t ′k) < M1.
(ii) There exists T1 > 0 (depending on M1 only) such that if for some t1 < t2,

M(t1) = M(t2) = M1 and M(t) > M1 for t ∈ (t1, t2), then t2 − t1 < T1.

Let �̄�
0 > 0 and (ϕ̄�

0 (x), φ̄�
0 (x)) be given by Claim 6.2. First we show Claim

6.4(i). Assume to the contrary that M(t) ≥ M1 for all t ≥ t1. Then by Claim 6.3, it
follows that (R(x, t), S(x, t)) ≤D (�R(x),�S(x)), ∀ x ∈ [0, L], t ≥ t1 + 2. By
(6.3) and (6.4), we see that U, u satisfies a linear system with bounded coefficients,
so that there is a constant C7 such that M(t1 + 2) ≤ C7M(t1). Now, if we choose C8
such that (1, 1) ≤D C8(ϕ̄

�
0 , φ̄�

0 ), then

(U (·, t1 + 2), u(·, t1 + 2))) ≤D M(t1 + 2)(1, 1) ≤D C9M(t1)(ϕ̄
�
0 , φ̄�

0 ).

for some constant C9 = C7C8 independent of initial condition. Hence,

(
Ū (x, t), ū(x, t)

) := C9M(t1)e
−�̄�

0 (t−t1−2) (ϕ̄�
0 (x), φ̄�

0 (x)
)

satisfies the following inequalities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U t = (
d(x)U x − ν(x)U

)

x + fR

(
�R(x), U

u

)
u + fS

(
�S(x), U

u

)
u − mU

≥ (
d(x)U x − ν(x)U

)

x + fR

(
R(x, t), U

u

)
u + fS

(
S(x, t), U

u

)
u

−mU , x ∈ (0, L),

ut = (d(x)ux − ν(x)u)x + μ
(

U
u

)
u − mu, x ∈ (0, L),

B
x [w] = 0, w = U, u, x = 0 or L ,

(Ū (·, t1 + 2), ū(·, t1 + 2)) ≥D (U (·, t1 + 2), u(·, t1 + 2)).
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for the time interval t ≥ t1 +2. Therefore, by comparison, we have (U, u) ≤D (U , u)

for t ≥ t1 + 2, i.e.

M(t) ≤ C9M(t1)e
−�̄�

0 (t−t1−2) for t ≥ t1 + 2.

This contradicts M(t) ≥ M1 for all t ≥ t1, and proves Claim 6.4(i). To prove Claim
6.4(ii), let M(t1) = M(t2) = M1 and M(t) > M1 in (t1, t2). If t2 − t1 ≤ 2, then we
are done. If t2 − t1 > 2, then from the preceding arguments we have

M1 = M(t2) ≤ C9M1e−�̄�
0 (t2−t1−2),

i.e.

t2 − t1 ≤ T1 := 2 + logC9

�̄�
0

.

This proves Claim 6.4(ii).

Claim 6.5 There exists M2 > 0 such that lim supt→∞ M(t) ≤ M2, regardless of
initial condition.

If M(t) ≤ M1 for all t , then there is nothing to prove. If M(t0) > M1 for some
t0, then by Claim 6.4, we can find a finite (maximal) interval (t1, t2) � t0 such that
M(t1) = M(t2) = M1, M(t) > M1 in (t1, t2) and t2 − t1 < T1. Since M1 is fixed
(Claim 6.3), T1 > 0 is independent of initial data (Claim 6.4(ii)). One can define a
constant M2 = M2(M1, T1) by M2 := sup M(t), where the supremum is taken over
0 ≤ t ≤ T1 and initial condition satisfying

(0, 0) ≤D (R0, S0) ≤D 2(R∗(·), S∗(·)), ‖U0‖ ≤ M1 and ‖u0‖ ≤ M1.

By assumption, M(t1) ≤ M1, t2 − t2 ≤ T1 and 0 ≤D (R(·, t1), S(·, t1)) ≤D

2(R∗(·), S∗(·)). Hence we conclude, by the fact that the semiflow is autonomous,
that sup(t1,t2) M(t) ≤ M2. This proves Claim 6.5. ��

6.2 Proof of Theorem 2.2

Recall the definition of Y in (2.6), and define Y0 := {(R, S, U, u) ∈ Y : u 	≡
0 in [0, L]}, and the complementary set

∂Y0 := Y − Y0 = {(R, S, U, u) ∈ Y : u ≡ 0 in [0, L]}
= {(R, S, U, u) ∈ Y : U ≡ u ≡ 0 in [0, L]},

so that Y = Y0 ∪ ∂Y0. Next, we define the function p : Y → [0,∞) by

p(P0) = p
(

R0, S0, U 0, u0
)

= min[0,L] u0(·).
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It is easy to see that p is continuous, and satisfies p(�t (P0)) > 0 for t > 0 if either
p(P0) > 0, or p(P0) = 0 with P0 ∈ Y0, where �t : Y → Y is the semiflow
associated with system (1.12) (here we emphasize the distinction of p : X → R from
the distance function of X = C([0, L]; R

4+)). We will prove the persistence result
(Theorem 2.2(ii)) before the extinction results (Theorem 2.2(i)).

Since the proof of Theorem 2.2(ii) is quite lengthy, we provide a brief outline here.
The goal here is to show that the semiflow is uniformly persistent with respect to
the distance function p, i.e. lim inf t→∞ p(�t (P0)) ≥ η̃ for some η̃ independent of
P0 ∈ Y0 (Step 1; Claim 6.7(i)) Show that {(R∗, S∗, 0, 0)} is the global attractor on
the invariant set ∂Y0 (Step 2; Claim 6.7(ii)) Show acyclicity in ∂Y0 (Step 3; Claim
6.8) Show that, for each P0 ∈ Y0, the omega limit set (which is necessarily chain
transitive) ω(P0) 	⊂ {(R∗, S∗, 0, 0)} (Step 4; Claim 6.9) Show that {(R∗, S∗, 0, 0)} is
isolated in Y = Y0 ∪ ∂Y0. The above four steps allows us to apply (Smith and Zhao
2001, Theorem 3) (see also Smith and Thieme 2011; Zhao 2003) to show that that for
each compact chain transitive set L such that L 	⊂ {(R∗, S∗, 0, 0)} (such as ω(P0),
see Step 3), there exists η̃ such that minx∈L p(x) ≥ η̃. Finally, by (Magal and Zhao
2005, Theorem 3.7; Remark 3.10), there is a global attractor bounded away from ∂Y0,
which implies the existence of a positive steady state.

Proof of Theorem 2.2(ii) By Lemma 4.2 (ii), sup(x,t)∈[0,L]×[0,∞)
U (x,t)
u(x,t) < ∞ for any

given trajectory. It follows then by eventual boundedness (Proposition 2.2) and stan-
dard parabolic estimates (Lieberman 1996, Section VII.8) that system (1.12) generates
a semiflow �t on Y with precompact trajectories in X. ��
Claim 6.6 (i) If P0 = (

R0, S0, U 0, u0
) ∈ Y0, then U (x, t) > 0 and u(x, t) > 0 for

all x ∈ [0, L] and t > 0. i.e. Y0 is positively invariant for �t .
(ii) ∂Y0 is closed and positively invariant.

Claim 6.6 (i) follows from strong maximum principle for linear cooperative systems,
and Claim 6.6 (ii) is obvious. Next, define

M = {(
R∗(·), S∗(·), 0, 0)} , and M∂ =

{
P0 ∈ ∂Y0 : �t

(
P0

)
∈ ∂Y0 ∀t ≥ 0

}
,

where (R∗(·), S∗(·)) is the unique positive steady state of (2.1) (Proposition 2.1). By
the above discussion, we see that

M∂ = ∂Y0.

Claim 6.7 (i) ∪P0∈M∂
ω(P0) = M.

(ii) There is no homoclinic cycle from M to M.

Claim 6.7 is a direct consequence of the fact that (R∗(·), S∗(·), 0, 0) is globally asymp-
totically stable among all solutions of (1.12) inM∂ = ∂Y0 (Proposition 2.1).

By assumption, the principal eigenvalue �0 of (2.8) satisfies �0 + m < 0. So
there is 0 < ε̄ � 1 such that the principal eigenvalue �̄ of the following problem is
negative.

123



1804 S.-B. Hsu et al.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
d(x)ϕ′(x) − ν(x)ϕ(x)

)′ + fR

(
R∗(x) − ε̄,

ϕ(x)
φ(x)

)
φ(x)

+ fS

(
S∗(x) − ε̄,

ϕ(x)
φ(x)

)
φ(x) − mϕ(x) + �̄ϕ(x) = 0, x ∈ (0, L),

(
d(x)φ′(x) − ν(x)φ(x)

)′ + μ
(

ϕ(x)
φ(x)

)
φ(x) − mφ(x) + �̄φ(x) = 0, x ∈ (0, L),

B
x [w] = 0, w = ϕ, φ, x = 0 or L .

(6.7)

Claim 6.8 There exists η1 > 0 such that for any P0 ∈ Y0,

lim sup
t→∞

dist
(
�t

(
P0

)
,M

)
≥ η1

where dist((R0(·), S0(·), U 0(·), u0(·)),M) := max{‖R0 − R∗‖, ‖S0 − S∗‖, ‖U 0‖,
‖u0‖} is the usual distance function in Y. In particular, W s(R∗(·), S∗(·), 0, 0)∩Y0 =
∅, where W s(R∗(·), S∗(·), 0, 0) is the stable set of (R∗(·), S∗(·), 0, 0) (see Smith and
Zhao 2001).

Suppose to the contrary that for some P0, the corresponding solution �t (P0) =
(R, S, U, u) satisfies limt→∞ dist(�t (P0),M) = 0. In particular, there exists t̄ > 0
such that

R(x, t) ≥ R∗(x) − ε̄ and S(x, t) ≥ S∗(x) − ε̄

for all x ∈ [0, L] and t ≥ t̄ . By Claim 6.6, there exists δ̄ > 0 such that

δ̄ϕ̄(x) ≤ U (x, t̄), and δ̄φ̄(x) ≤ u(x, t̄) for x ∈ [0, L].
where (ϕ̄, φ̄) ∈ C ∩ (int D) is the principal eigenfunction of (6.7). Then

(U (x, t), u(x, t)) := δ̄e−�̄(t−t̄)(ϕ̄(x), φ̄(x)) (6.8)

satisfies the following linear cooperative system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

U t = (
d(x)U x − ν(x)U

)

x + fR

(
R∗(x) − ε̄,

U
u

)
u + fS

(
S∗(x) − ε̄,

U
u

)
u

−mU , x ∈ (0, L), t ≥ t̄,

ut = (
d(x)ux − ν(x)u

)

x + μ
(

U
u

)
u − mu, x ∈ (0, L), t ≥ t̄,

B
x [w] = 0, w = U , u, x = 0 or L , t ≥ t̄,

(U (x, t̄), u(x, t̄)) ≤D (U (x, t̄), u(x, t̄)), x ∈ (0, L),

for which (U (x, t), u(x, t)) is a supersolution in [0, L] × [t̄,∞). Therefore by com-
parison,

(U (·, t), u(·, t)) ≥D (U (·, t), u(·, t)) for all t ≥ t̄ .

This is a contradiction as (U, u) needs to stay close to (0, 0), yet �̄ < 0 in (6.8). This
proves Claim 6.8.
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Claim 6.9 M is isolated in Y. i.e. there exists a neighborhood of M in Y in which M
is the maximal invariant subset.

To see Claim 6.9, it remains to show that M is maximal invariant in some neigh-
borhood. Suppose there exists a bounded total trajectory N near to M. By Claim 6.8,
N∩Y0 = ∅ and henceN ⊂ ∂Y0 and �t (N) = N for all t > 0, but this contradicts the
fact that dist (�t (N),M) → 0 as t → ∞ (Proposition 2.1). This proves Claim 6.9.

Finally, by the precompactness of trajectories of the semiflow �t , together with
Claims 6.6, 6.7, 6.8 and 6.9, we may apply the uniform persistence results of (Smith
and Zhao 2001, Theorems 3 and 4) to show the existence of η̃ > 0 such that

min
P ′∈ω(P0)

p(P ′) ≥ η̃ for all P0 ∈ Y0.

i.e. there exists some η̃ > 0 independent of initial condition P0 ∈ Y0 such that
lim inf t→∞ u(·, t) ≥ η̃. By Theorem 2.1(iii), every trajectory approaches Y1, where
Y1 is defined in (2.7). Hence,

lim inf
t→∞ U (x, t) ≥ Qmin lim inf

t→∞ u(x, t) ≥ Qminη̃, ∀ x ∈ [0, L].

Therefore, (2.9) holds for σ = min{η̃, Qminη̃}.
By (Magal and Zhao 2005, Theorem 3.7 and Remark 3.10), it follows that �(t) :

Y0 → Y0 has a global attractor A0 ⊂ Y0. It then follows from (Magal and Zhao 2005,
Theorem 4.7) that �(t) has a steady-state solution

(Rc(·), Sc(·), Uc(·), uc(·)) ∈ Y0.

By (2.9), it follows that uc(·) > 0 and Uc(·) > 0. It follows from (4.3) that Uc(·) ≤
Q∗uc(·). Then FN (·, N ) := fN (N ,

Uc(·)
uc(·) )uc(·) > 0. We may then apply Lemma 3.1

to deduce that Rc(·) > 0 and Sc(·) > 0. Theorem 2.2(ii) is proved. ��
We supply a brief outline for the proof of Theorem 2.2(i) (Step 1) Suppose there

exists P0 ∈ Y0 such that for some ε0 > 0, xk ∈ [0, L] and tk → ∞, �t (P0) =
(R, S, U, u) satisfies

u(xk, tk + 1) ≥ ε0 for all k. (6.9)

(Step 2) Claim 6.10 allows one to assume without loss of generality that (R0, S0) �D

(R∗, S∗) (Step 3) Define

c(t) := inf
{
τ > 0 : (U (x, t), u(x, t)) ≤D τ

(
ϕ0(x), φ0(x)

)
, x ∈ [0, L]

}
,

(6.10)

where (ϕ0(x), φ0(x)) � 0 is the eigenfunction corresponding to �0, which is the
principal eigenvalue of (2.8). One can then show by comparison that c(t) is strictly
decreasing for all t ≥ 0. In particular c0 := limt→∞ c(t) exists. By (6.9), c0 > 0
(Step 4) Passing to a sequence tk → ∞, there exists an entire solution P̃(t) =
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limtk→∞ �t+tk (P0) ∈ ω(P0) such that the corresponding c∞(t) ≡ c0 > 0. This can
only happen when

P̃(t) =
(

R̃(·, t), S̃(·, t), c0ϕ
0(·), c0φ

0(·)
)

for all t ∈ R.

(Step 5) Upon examining the third and fourth equation of (1.12), this implies that
m + �0 = 0 and

P̃(t) =
(

R∗(·), S∗(·), c0ϕ
0(·), c0φ

0(·)
)

i.e. the entire solution P̃(t) is actually an equilibrium, which is possible only if c0 = 0.
This is in contradiction with c0 > 0 and proves the theorem.

Proof of Theorem 2.2(i) Assume that �0 + m ≥ 0. By Theorem 2.1(iii) and Propo-
sition 2.2, for any P0 ∈ Y, the omega limit set ω(P0) ⊂ Y1, where Y1 is defined in
(2.7). It is enough to show that for any P0 ∈ Y0, u(·, t) → 0 uniformly in [0, L] as
t → ∞.

Fix some initial data (R0(·), S0(·), U 0(·), u0(·)) ∈ Y0. Suppose to the contrary that
there exists ε0 > 0, a sequence {tk} ↗ ∞ and a sequence {xk} → x0 ∈ [0, L] such
that (6.9) holds. ��
Claim 6.10 There exists T0 > 0 such that (R(·, T0), S(·, T0)) �D (R∗(·), S∗(·)).
For each positive integer k, we define

(Rk(x, t), Sk(x, t), Uk(x, t), uk(x, t))

= (R(x, tk + t), S(x, tk + t), U (x, tk + t), u(x, tk + t)).

Then for each k, (Rk(x, t), Sk(x, t), Uk(x, t), uk(x, t)) satisfies system (1.12). We are
in a position to apply the L p estimates and embedding theorems (Lieberman 1996,
Section VI.3 and VII.8) to the sequence (Rk(x, t), Sk(x, t), Uk(x, t), uk(x, t)). By
Lemma 4.2, there exists Q > 0 independent of k such that

sup
k

‖Uk/uk‖L∞((0,L)×(0,∞)) ≤ Q.

Hence fR(Rk, Uk/uk), fS(Sk, Uk/uk) and μ(Uk/uk) are uniformly bounded in
L∞((0, L) × (0,∞)). Therefore, we may pass to a subsequence and assume

fR(Rk, Uk/uk) ⇀ FR(x, t), fS(Sk, Uk/uk) ⇀ FS(x, t), μ(Uk/uk) ⇀ g(x, t)

weakly in L p((0, L) × (0, T )) for all p > 1 and all T > 0. Moreover, we may apply
the parabolic L p estimate to deduce that for each p > 1, and T > 0, we have ‖ (Rk,

Sk, Uk, uk) ‖W 2,1,p((0,L)×(0,T )) ≤C2. Then ‖ (Rk, Sk, Uk, uk) ‖
C1+α, 1+α

2 ([0,L]×[0,T ])
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≤ C3, for some α ∈ (0, 1). Passing to a further “diagonal” subsequence, still denoted
by (Rk, Sk, Uk, uk), we have

(Rk, Sk, Uk, uk) →
(

R̃, S̃, Ũ , ũ
)

,

in C
1+α, 1+α

2
loc ([0, L] × [0,∞)) as k → ∞. Moreover, ũ is a solution to

⎧
⎪⎨

⎪⎩

ũt = (d(x)ũx − ν(x)ũ)x + g(x, t)ũ − mũ, x ∈ (0, L), t > 0,

B
x [ũ] = 0, x = 0 or L , t > 0,

ũ(x0, 1) > 0 for some x0.

By strong maximum principle, we have ũ(x, t) > 0 for all x ∈ [0, L] and t ≥ 0.
This, together with the fact that (Uk, uk) → (Ũ , ũ), implies that Uk/uk → Ũ/ũ in
Cloc([0, L] × [0,∞)). Thus, (R̃, S̃, Ũ , ũ) satisfies the original equation (1.12) with
the additional properties (by Lemma 4.1)

(R̃(x, t), S̃(x, t)) ≤D
(
R∗(x), S∗(x)

)
and ũ(x, t) > 0,

for all x ∈ [0, L] and t ≥ 0. Here (R∗(·), S∗(·)) is the unique positive solution of

(2.1). Furthermore, fR(R̃, Ũ
ũ )ũ(x, t) > 0 and fS(S̃, Ũ

ũ )ũ(x, t) > 0 for all x and t ≥ 0

(by (6.9)), which implies by comparison (see Lemma 3.1) that (R̃(·, t), S̃(·, t)) �D

(R∗(·), S∗(·)) for all t > 0. In particular

lim
k→∞(R(x, tk + 1), S(x, tk + 1) = (R̃(·, 1), S̃(·, 1)) �D

(
R∗(·), S∗(·))

from which Claim 6.10 follows.
From now on, we assume without loss that (R0(·), S0(·)) �D (R∗(·), S∗(·))

(Claim 6.10) and thus (R(·, t), S(·, t)) �D (R∗(·), S∗(·)) for all t ≥ 0 (see proof
of Lemma 4.1(i)). Next, recall the definition of c(t) in (6.10). For t ≥ t0, it is not hard
to see that

c(t0)e
−(�0+m)(t−t0)

(
ϕ0(x), φ0(x)

)

is a supersolution of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ut = (d(x)Ux − ν(x)U )x + fR
(
R∗(x), U

u

)
u

+ fS
(
S∗(x), U

u

)
u − mU, x ∈ (0, L), t ≥ t0,

ut = (d(x)ux − ν(x)u)x + μ
(U

u

)
u − mu, x ∈ (0, L), t ≥ t0,

B
x [w] = 0, w = U, u, x = 0 or L , t ≥ t0,

(6.11)

for t ≥ t0 with initial data at t = t0 being given by (U (·, t0), u(·, t0)). For the case
where �0 + m > 0, we can show that c(t) ≤ e−(�0+m)t c(0), which implies that
c(t) → 0 as t → ∞. Thus, u(·, t) → 0 as t → ∞. This contradicts (6.9).
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It remains to tackle the case where �0 + m = 0. Given t1 ≥ 0, it is easy to see that
c(t1)(ϕ0(x), φ0(x)) is an upper solution of (6.11) for t ≥ t1. On the other hand, using
the fact that (R0(·), S0(·)) �D (R∗(·), S∗(·)), we see that (U (·, t), u(·, t)) is a strict
subsolution of (6.11), for t ≥ t1. Thus, (U (·, t), u(·, t)) �D c(t1)(ϕ0(·), φ0(·)), for
x ∈ [0, L], t ≥ t1. Therefore, c(t) < c(t1), for t > t1, that is, c(t) is strictly decreasing
in t .

Define c0 = lim
t→∞ c(t) = inf

t>0
c(t). By assumption (6.9), c0 > 0.

Claim 6.11 limt→∞(U (x, t), u(x, t)) = c0(ϕ0(x), φ0(x)), uniformly in x ∈ [0, L],
where c0 = lim

t→∞ c(t) > 0.

Suppose to the contrary, then there is a sequence {t̂k} ↗ ∞ such that

lim inf
k→∞ sup

x∈[0,L]

[
c(t̂k)

(
ϕ0(x), φ0(x)

)
− (

U
(
x, t̂k

)
, u

(
x, t̂k

))]
> 0. (6.12)

Furthurmore, for each t̂k , we can choose by definition of c(t̂k + 1) some x̂k ∈ [0, L]
such that

(
U (x̂k, t̂k + 1), u(x̂k, t̂k + 1)

) = c(t̂k + 1)
(
ϕ0(x̂k), φ

0(x̂k)
)

, (6.13)

and x̂k → x̂0 as k → ∞. For each positive integer k, we define

(
R̂k(x, t), Ŝk(x, t), Ûk(x, t), ûk(x, t)

)

= (R(x, t̂k + t), S
(
x, t̂k + t

)
, U (x, t̂k + t), u(x, t̂k + t)).

We can use the similar arguments as we did before to conclude that

(R̂k(x, t), Ŝk(x, t), Ûk(x, t), ûk(x, t)) → (R̂(x, t), Ŝ(x, t), Û (x, t), û(x, t)),

uniformly in x ∈ [0, L], and locally in t ∈ [0,∞), as k → ∞. We can further
show that (R̂(x, t), Ŝ(x, t), Û (x, t), û(x, t)) is a classical solution of system (1.12)
on [0, L] × [0,∞). It follows from (6.12) and (6.13) that

(
Û (·, 0) , û (·, 0)

)
≤D c0

(
ϕ0 (·) , φ0 (·)

)
,

(
Û (·, 0) , û (·, 0)

)
	≡ c0

(
ϕ0 (·) , φ0 (·)

)
, (6.14)

and (
Û

(
x̂0, 1

)
, û

(
x̂0, 1

)) = c0
(
ϕ0 (x̂0

)
, φ0 (x̂0

))
, (6.15)

respectively. Note that c0(ϕ0(x), φ0(x)) is a supersolution of system (6.11), while
(Û (x, t), û(x, t)) is a subsolution of (6.11). Then the strong maximum principle con-
tradicts (6.14) and (6.15). Thus, Claim 6.11 holds.
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By Claim 6.11, it follows that the equations of R and S in (1.12) are asymptotic to
the following system

⎧
⎪⎪⎨

⎪⎪⎩

Rt = (DR(x)Rx )x − fR

(
R,

ϕ0(x)

φ0(x)

)
(c0φ0(x)) − ωr R + ωs S, x ∈ (0, L), t > 0,

St = (DS(x)Sx )x − fS

(
S,

ϕ0(x)

φ0(x)

)
(c0φ0(x)) + ωr R − ωs S, x ∈ (0, L), t > 0,

BN ,x [N ] = cN ,x ≥ 0, N = R, S, x = 0 or L , t > 0,

By the theory for asymptotically autonomous semiflows [see, e.g., (Thieme 1992,

Corollary 4.3)] and Lemma 3.1, while making use of FN (x, N ) = fN (N ,
ϕ0(x)

φ0(x)
)

(c0φ0(x)) > 0, we see that (R(·, t), S(·, t)) → (R∗∗(·), S∗∗(·)) such that

(0, 0) �D (R∗∗(·), S∗∗(·)) �D (R∗(·), S∗(·)).

Thus, we see that the equations ofU and u in (1.12) are asymptotic to the following
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ut = (d(x)Ux − ν(x)U )x + fR
(
R∗∗(x), U

u

)
u + fS

(
S∗∗(x), U

u

)
u

−mU, x ∈ (0, L), t > 0,

ut = (d(x)ux − ν(x)u)x + μ
(U

u

)
u − mu, x ∈ (0, L), t > 0,

B
x [w] = 0, w = U, u, x = 0 or L , t > 0.

(6.16)

Finally, consider the following eigenvalue problem associated with (6.16):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
d(x)ϕ′(x) − ν(x)ϕ(x)

)′ + fR

(
R∗∗(x),

ϕ(x)
φ(x)

)
φ(x)

+ fS

(
S∗∗(x),

ϕ(x)
φ(x)

)
φ(x) + �ϕ(x) = 0, x ∈ (0, L),

(
d(x)φ′(x) − ν(x)φ(x)

)′ + μ
(

ϕ(x)
φ(x)

)
φ(x) + �φ(x) = 0, x ∈ (0, L),

B
x [w] = 0, w = ϕ, φ, x = 0 or L .

(6.17)
We denote the principal eigenvalue of (6.17) by �∗∗. Then �∗∗ + m > �0 + m = 0.
By the similar arguments we did for the case where �0 + m > 0, it follows that
u(·, t) → 0 as t → ∞. This contradicts Claim 6.11. Thus, (6.9) is impossible. This
concludes the proof of Theorem 2.2(i). ��

7 The unstirred chemostat model

In this section, we specialize in the chemostat model (1.8) and prove Theorem 2.3.
We will first show the existence of a critical diffusion rate in Sect. 7.1. In Sect. 7.2,
we show, under an additional assumption (H7), the existence of a globally attracting
steady state whenever the phytoplankton species persists.
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1810 S.-B. Hsu et al.

7.1 Critical diffusion rate

ByTheorem2.2, the persistence/extinction of the chemostat system (1.8) is determined
by the associated nonlinear eigenvalue problem

⎧
⎪⎪⎨

⎪⎪⎩

dϕ′′(x)+ fR

(
R∗(x),

ϕ(x)
φ(x)

)
φ(x)+ fS

(
S∗(x),

ϕ(x)
φ(x)

)
φ(x)+�ϕ(x)=0, x ∈(0, 1),

dφ′′(x) + μ
(

ϕ(x)
φ(x)

)
φ(x) + �φ(x) = 0, x ∈ (0, 1),

wx (0) = 0, wx (1) + γw(1) = 0, w = ϕ, φ.

(7.1)
Here (R∗(x), S∗(x)) is the unique steady state of (2.1) (see Proposition 2.1), deter-
mined by ⎧

⎪⎨

⎪⎩

d R′′ − ωr R + ωs S = 0, x ∈ (0, 1),

d S′′ + ωr R − ωs S = 0, x ∈ (0, 1),

N ′(0) = −N (0), N ′(1) + γ N (1) = 0, N = R, S.

(7.2)

We observe that R∗ + S∗ satisfies a simplified equation, whence R∗(x) + S∗(x) =
(R(0) + S(0))

(
1+γ
γ

− x
)
(see, e.g., Hsu and Waltman (1993)).

By Lemma 5.1, it follows that for each d > 0, the eigenvalue problem (7.1) admits a
principal eigenvalue �0 := �0(d) corresponding to which there is a strongly positive
eigenfunction (ϕ0(x), φ0(x)) �D (0, 0).

Lemma 7.1 For each d > 0, let �0 := �0(d) be the principal eigenvalue of the
eigenvalue problem (7.1). Then there is a d0 > 0 such that

⎧
⎪⎨

⎪⎩

�0(d) < 0, if 0 < d < d0,

�0(d) = 0, if d = d0,

�0(d) > 0, if d > d0.

Proof Let (η1, w1(x)) be the principal eigenpair of following eigenvalue problem:

{
w′′(x) + ηw(x) = 0, x ∈ (0, 1),

w′(0) = w′(1) + γw(1) = 0.
(7.3)

It is standard to show that η1 > 0, see e.g., proof of Lemma 3.1. Let

Q∗ = sup{Q > 0 : fR(R∗(x), Q) + fS(S∗(x), Q) − μ(Q)Q ≥ 0 in [0, 1].},

where (R∗(x), S∗(x)) is the unique positive steady-state solution of system (7.2). It
is clear that Qmin < Q∗ and

fR(R∗(x), Q∗) + fS(S∗(x), Q∗) ≥ Q∗μ(Q∗) > 0 for all x ∈ [0, 1]. (7.4)

��
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Claim 7.1 �0(d) < 0 for all d ∈ (0, μ(Q∗)/η1), where η1 > 0 is the principal
eigenvalue of (7.3).

Recall from the proof of Lemma 5.1 that �0 = − log r̃(1), where r̃(t) is the spectral
radius of the semiflow map �t : C → C of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ut = dUxx + fR
(
R∗(x), U

u

)
u + fS

(
S∗(x), U

u

)
u, x ∈ (0, 1), t > 0,

ut = duxx + μ
(U

u

)
u, x ∈ (0, 1), t > 0,

wx (0, t) = 0, wx (1, t) + γw(1, t) = 0, w = U, u, t > 0,

w(x, 0) = w0(x) ≥ ( 	≡)0, w = U, u, x ∈ (0, 1),

(7.5)

Since (7.5) is a special case of (5.2),�t is also continuous, compact, and homogeneous
of degree one. Define

Û (x) := Q∗w1(x), and û(x) := w1(x).

It is enough to show that (Û , û) is a strict lower solution of (7.5) for all sufficiently
small d. Since then by strong-order-preserving property, �t (Û , û) �D (Û , û). This
means�t (Û , û) ≥D k(Û , û) for some k > 1, whence the Bonsall cone spectral radius
r̃(t) must be strictly greater than 1, and by definition �0 = − log r̃(1) < 0.

Now we verify that (Û , û) is a strict lower solution of (7.5) for d ∈ (0, μ(Q∗)/η1).
By computations, for d ∈ (0, μ(Q∗)/η1), we have

dÛxx + fR

(

R∗(x),
Û

û

)

û + fS

(

S∗(x),
Û

û

)

û

= d Q∗w′′
1(x) + fR(R∗(x), Q∗)w1(x) + fS(S∗(x), Q∗)w1(x)

≥ d Q∗ (−η1w1(x)) + μ(Q∗)Q∗w1(x) = (μ(Q∗) − dη1) Q∗w1(x) > 0,

(where we used (7.4)) and

dûxx + μ

(
Û

û

)

û = dw′′
1 + μ(Q∗)w1 = (μ(Q∗) − dη1) w1 > 0.

This proves Claim 7.1.

Claim 7.2 �0(d) > 0 for all d ∈ (μ(Q∗)/η1,+∞), where Q∗ is given by (2.3) and
η1 > 0 is the principal eigenvalue of (7.3).

Define

Û (x) := Q∗w1(x), and û(x) := w1(x).

By an analogous argument as above, we can show that for d ∈ (μ(Q∗)/η1,+∞),
(Û , û) forms a strict upper solution of (7.5). This implies that �t (Û , û) �D (Û , û).
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1812 S.-B. Hsu et al.

We claim that this implies that the Bonsall cone spectral radius r̃(t) of�t is strictly
less than 1 for all t > 0. Fix t > 0. By Corollary 5.2, there exists (ϕ, φ) ∈ C\{0}
such that �t (ϕ, φ) = r̃(t)(ϕ, φ). Since (Û , û), (ϕ, φ) ∈ int D, we may scale the
eigenvector (ϕ, φ) so that

(ϕ, φ) ≤D (Û , û), but k(ϕ, φ) �D (Û , û) for all k > 1.

Then by comparison,

r̃(t)(ϕ, φ) = �t (ϕ, φ) ≤D �t (Û , û) �D (Û , û),

i.e. k̃r̃(t)(ϕ, φ) ≤D (Û , û) for some k̃ > 1. Hence k̃r̃(t) ≤ 1 and r̃(t) ≤ 1/k̃ < 1. i.e.
�0 = − log r̃(1) > 0 for all d ∈ (μ(Q∗)/η1,+∞). This proves Claim 7.2.

By Claims 7.1 and 7.2, we see that there exists a d0 > 0 such that �0(d0) = 0. It
remains to show that {

�0(d) < 0, for all 0 < d < d0,

�0(d) > 0, for all d > d0.
(7.6)

Assume that �0(d0) = 0 is the principal eigenvalue of the eigenvalue problem (7.1)
with d = d0, that is there exists eigenfunction (ϕd0(x), φd0(x)) ∈ C ∩ int D satisfying

⎧
⎪⎪⎨

⎪⎪⎩

d0ϕ′′(x) + fR

(
R∗(x),

ϕ(x)
φ(x)

)
φ(x) + fS

(
S∗(x),

ϕ(x)
φ(x)

)
φ(x) = 0, x ∈ (0, 1),

d0φ′′(x) + μ
(

ϕ(x)
φ(x)

)
φ(x) = 0, x ∈ (0, 1),

wx (0) = 0, wx (1) + γw(1) = 0, w = ϕ, φ.

Claim 7.3 For each d > d0, �0(d) > 0.

Again, it suffices to show that (U(x),u(x)) := (ϕd0(x), φd0(x)) is a strict lower
solution, so that �t (U,u) �D (U,u) for t > 0. Now, we verify

dUxx + fR

(

R∗(x),
U
u

)

u + fS

(

S∗(x),
U
u

)

u

= dϕ′′
d0(x) + fR

(

R∗(x),
ϕd0

φd0

)

φd0(x) + fS

(

S∗(x),
ϕd0

φd0

)

φd0(x)

= d

d0

[

d0ϕ
′′
d0(x) + d0

d
fR

(

R∗(x),
ϕd0

φd0

)

φd0(x) + d0
d

fS

(

S∗(x),
ϕd0

φd0

)

φd0(x)

]

<
d

d0

[

d0ϕ
′′
d0(x) + fR

(

R∗(x),
ϕd0

φd0

)

φd0(x) + fS

(

S∗(x),
ϕd0

φd0

)

φd0(x)

]

= 0,
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and

duxx + μ

(
U
u

)

u = dφ′′
d0(x) + μ

(
ϕd0

φd0

)

φd0(x)

<
d

d0

[

d0φ
′′
d0(x) + μ

(
ϕd0

φd0

)

φd0(x)

]

= 0.

This proves Claim 7.3.

Claim 7.4 For each d < d0, �0(d) < 0.

Claim 7.4 follows from a similar fashion as Claim 7.3, so we skip the details. This
proves Lemma 7.1. ��

Here we prove parts (i) and (ii) of Theorem 2.3.

Proof of Theorem 2.3 (i) and (ii) First, it follows from Theorem 2.1 that system (1.8)
generates a semiflow in Y. Let d0 be given by Lemma 7.1. If d ∈ [d0,∞), then
Lemma 7.1 says that the principal eigenvalue �0 of (7.1) is non-positive. Hence,
Theorem 2.3(i) follows from Theorem 2.2(i). If d ∈ (0, d0), then Lemma 7.1 says that
�0 < 0. Theorem 2.3(ii) thus follows from Theorem 2.2(ii). ��

7.2 Global attractivity of system (1.8)

In this subsection, we intend to investigate the uniqueness and global stability of
positive steady-state solutions of system (1.8) under the additional assumption (H7).
Note that the existence of a positive steady-state solution of system (1.8) is obtained
based on persistence theory in the previous section.

Let ⎧
⎪⎨

⎪⎩

WR(x, t) = R∗(x) − R(x, t),

WS(x, t) = S∗(x) − S(x, t),

W (x, t) = WR(x, t) + WS(x, t) − U (x, t),

(7.7)

where (R∗(x), S∗(x)) is the unique steady state solution of (7.2). Then system (1.8)
is equivalent to the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(WR)t = d(WR)xx + fR

(
R∗(x) − WR,

WR+WS−W
u

)
u − ωr WR

+ωs WS, x ∈ (0, 1), t > 0,

(WS)t = d(WS)xx + fS

(
S∗(x) − WS,

WR+WS−W
u

)
u + ωr WR

−ωs WS, x ∈ (0, 1), t > 0,

ut = duxx + μ
(

WR+WS−W
u

)
u, x ∈ (0, 1), t > 0,

Wt = dWxx , x ∈ (0, 1), t > 0,

Zx (0, t) = 0, Zx (1, t) + γ Z(1, t) = 0, Z = WR, WS, u, W, t > 0,

Z(x, 0) = Z0(x) ≥ ( 	≡)0, Z = WR, WS, u, W, x ∈ (0, 1).

(7.8)
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Motivated by Theorem 2.1, the relevant domains for system (7.8) are

Y′ =
{(

W 0
R(·), W 0

S (·), u0(·), W 0(·)
)
∈C([0, 1], R

3+)×C([0, 1], R) : W 0
R(·)≤ R∗(·),

W 0
S (·) ≤ S∗(·), ∃Q̃ > 0 such that 0 ≤ W 0

R(·) + W 0
S (·) − W 0(·) ≤ u0(·)Q̃

}
,

(7.9)

and

Y′
1 =

{(
W 0

R(·), W 0
S (·), u0(·), W 0(·)

)
∈C([0, 1], R

3+) C([0, 1], R) : W 0
R(·)≤ R∗(·),

W 0
S (·) ≤ S∗(·), Qminu0(·) ≤ W 0

R(·) + W 0
S (·) − W 0(·) ≤ Q∗u0(·)

}
,

where Q∗ is given in (2.3).
It is easy to see that the unique steady state for the fourth equation in system (7.8)

is the trivial solution. It then follows from (Friedman 1964, Sect. 6.5, Theorem 5) that

lim
t→∞ W (x, t) = 0 uniformly for x ∈ [0, 1].

Thus, the limiting system of (7.8) takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(WR)t = d(WR)xx + fR

(
R∗(x) − WR,

WR+WS
u

)
u − ωr WR

+ωs WS, x ∈ (0, 1), t > 0,

(WS)t = d(WS)xx + fS

(
S∗(x) − WS,

WR+WS
u

)
u + ωr WR

−ωs WS, x ∈ (0, 1), t > 0,

ut = duxx + μ
(

WR+WS
u

)
u, x ∈ (0, 1), t > 0,

Zx (0, t) = 0, Zx (1, t) + γ Z(1, t) = 0, Z = WR, WS, u, t > 0,

Z(x, 0) = Z0(x) ≥ ( 	≡)0, Z = WR, WS, u, x ∈ (0, 1),

(7.10)

where the biologically relevant domains for system (7.10) are

Y′′ =
{(

W 0
R(·), W 0

S (·), u0(·)
)
∈C([0, 1], R

3+) : W 0
R(x) ≤ R∗(x), W 0

S (x)≤ S∗(x),

∃Q̃ > 0 such that 0 ≤ W 0
R(x) + W 0

S (x) ≤ u0(x)Q̃ for all x ∈ [0, 1]
}

,

and

Y′′
1 = {(W 0

R(·), W 0
S (·), u0(·)) ∈ C([0, 1], R

3+) : W 0
R(x) ≤ R∗(x), W 0

S (x) ≤ S∗(x),

Qminu0(x) ≤ W 0
R(x) + W 0

S (x) ≤ Q∗u0(x) for all x ∈ [0, 1]},

where Q∗ is given in (2.3).
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For persistence result, we setY′′
0 := {(WR, WS, u) ∈ Y′′ : u 	≡ 0 in [0, 1]}, and the

complementary set

∂Y′′
0 := Y′′ − Y′′

0 = {(WR, WS, u) ∈ Y′′ : u ≡ 0 in [0, 1]}
= {(WR, WS, u) ∈ Y′′ : WR = WS = u ≡ 0 in [0, 1]}.

The following result is related to the global attractivity of the positive steady state
of the limiting system (7.10).

Lemma 7.2 Assume that (H1), (H2) and (H7) hold, and �0 := �0(d) is the principal
eigenvalue of (7.1). If �0 < 0, then (7.10) admits a unique positive steady-state solu-
tion (ŴR(x), ŴS(x), û(x)) ∈ Y′′. Moreover, any solution (WR(·, t), WS(·, t), u(·, t))
of (7.10) with initial condition (W 0

R, W 0
S , u0) ∈ Y′′

0 satisfies

lim
t→∞(WR(x, t), WS(x, t), u(x, t)) = (ŴR(x), ŴS(x), û(x)), uniformly for x ∈ [0, 1].

Proof By the similar arguments in Lemma 4.2 and Theorem 2.1(i), we can show
that the set Y′′ is positively invariant under the semiflow �t generated by sys-
tem (7.10). Theorem 2.2 (ii) guarantees the existence of a compact attractor
A′′
0 ⊂Int(C([0, 1], R

3+)) for �t , and it suffices to show that �t is monotone and
subhomogeneous, which imply that the attractor A′′

0 is a singleton set. Fix P0 ∈ Y′′
0

and let (WR(·, t), WS(·, t), u(·, t)) = �t (P0), and set

R(x, t) = R∗(x) − WR(x, t), S(x, t) = S∗(x) − WS(x, t),

and

U (x, t) = WR(x, t) + WS(x, t).

Then it is not hard to see that (R(x, t), S(x, t), U (x, t), u(x, t)) ∈ Y satisfies system
(1.8), where Y is given in (2.6). By Lemma 4.2,

lim sup
t→∞

[

sup
x∈[0,L]

(
U (x, t) − Q∗u(x, t)

)
]

≤ 0.

Since �0 < 0 and u0 	≡ 0, it follows from Theorem 2.2(ii) that there exists η > 0
such that lim inf t→∞ u(·, t) ≥ η, so (recall that U (x, t) = WR(x, t) + WS(x, t))

lim sup
t→∞

(
U (x, t)

u(x, t)
− Q∗

)

= lim sup
t→∞

U (x, t) − Q∗u(x, t)

u(x, t)
≤ 0.

From the fact that Q∗ < Q B (Remark 2.1), we have

WR(·, t) + WS(·, t)

u(·, t)
= U (·, t)

u(·, t)
< Q B, ∀ t ≥ t0. (7.11)
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Note that we have also proved that�t is uniformly persistent with respect to (Y′′
0, ∂Y

′′
0)

in the sense that lim inf
t→∞ dist(�t (P0), ∂Y′′

0) ≥ η, ∀ P0(·) ∈ Y′′
0. By (7.11), without loss

of generality, we may further assume that the initial value (W 0
R(·), W 0

S (·), u0(·)) ∈ Y′′
0

and
W 0

R(·)+W 0
S (·)

u0(·) < Q B .
The Jacobian matrix of reaction terms in (7.10) with respect to (WR, WS, u) at

points (WR, WS, u) ∈ R
3+, takes the form

J =
⎛

⎝
∗ a12 a13

a21 ∗ a23
+ + ∗

⎞

⎠ ,

where

a21 = ωr + ∂ fS

∂ Q

(

S∗(x) − WS ,
WR + WS

u

)

,

a12 = ωs + ∂ fR

∂ Q

(

R∗(x) − WR ,
WR + WS

u

)

,

a13 = fR

(

R∗(x) − WR ,
WR + WS

u

)

− WR + WS

u

∂ fR

∂ Q

(

R∗(x) − WR ,
WR +WS

u

)

� fR

(

R∗(x) − WR ,
WR + WS

u

)

� 0,

a23 = fS

(

S∗(x) − WS ,
WR + WS

u

)

− WR + WS

u

∂ fS

∂ Q

(

S∗(x) − WS ,
WR + WS

u

)

� fS

(

S∗(x) − WS ,
WR + WS

u

)

� 0.

Note that μ(Q) and fN (N , Q) are Lipschitz continuous, thus the Jacobian matrix
of reaction terms, J , exists almost everywhere (WR, WS, u) ∈ R

3+. It follows from
the assumption (H7) that a21 ≥ 0 and a12 ≥ 0. Thus, the Jacobian matrix J has
nonnegative off-diagonal entries, and hence, the semiflow �t : Y′′ → Y′′ generated
by the system (7.10) is monotone Smith (1995) under the partial order ≤D generated
by the cone D := C0([0, 1], R

3+). Furthermore, if

WR < R∗(x), WS < S∗(x) for x ∈ [0, 1], and WR + WS < uQ B

where Q B is given in (H2), then a13 > 0 and a23 > 0, and hence, J is irreducible
Smith and Waltman (1995), which implies that such a semiflow is strongly monotone
in the interior of Y′′ Smith (1995). For convenience, we denote the reaction terms of
(7.10) by
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1(WR, WS, u) = fR

(
R∗(x) − WR,

WR+WS
u

)
u − ωr WR + ωs WS,

F2(WR, WS, u) = fS

(
S∗(x) − WS,

WR+WS
u

)
u + ωr WR − ωs WS,

F3(WR, WS, u) = μ
(

WR+WS
u

)
u.

It is easy to see that the reaction terms of (7.10) are strictly subhomogeneous in the
sense that for 0 < θ < 1 and (WR, WS, u) ∈ Y′′, we have

Fi (θWR, θWS, θu) > θ Fi (WR, WS, u), for i = 1, 2,

F3 (θWR, θWS, θu) = θ F3(WR, WS, u).

Then we can adopt the arguments in (Freedman and Zhao 1997, Theorem 2.2) to show
that for any t > 0, �t : Y′′ → Y′′ is strictly subhomogeneous in the sense that for
any θ ∈ (0, 1),

(
W 0

R(·), W 0
S (·), u0(·)) ∈ Y′′ with u0(·) � 0, we have

�t (θW 0
R(·), θW 0

S (·), θu0(·)) �D θ�t

(
W 0

R(·), W 0
S (·), u0(·)

)
.

For t > 0, we have proved that �t is compact, point dissipative and uniformly
persistent. It follows from (Magal and Zhao 2005, Theorem 3.8) that �t : Y′′

0 → Y′′
0

admits a global attractor A′′
0. Since �t is also strongly monotone, strictly subhomo-

geneous, A′′
0 ⊂ Y′′

0 and A′′
0 = �t (A′′

0), we further have A′′
0 ⊂ Int(C([0, 1], R

3+)). It
then follows from (Zhao 2003, Theorem 2.3.2) with K = A′′

0 that in fact A′′
0 = {e},

where e �D (0, 0, 0) is a fixed point of �t . This implies that e is globally attractive
for �t in Y′′

0, and we finish the proof. ��
By appealing to Lemma 7.2 and the theory of chain transitive sets, we are able to

lift the dynamics of (7.10) to the full system (1.8). That is, Theorem 2.2(ii) can be
improved, and we further have the following result which contains Theorem 2.3(ii’)
as a special case.

Theorem 7.1 Assume that (H1), (H2), and (H7) hold, and �0 := �0(d) is the princi-
pal eigenvalue of (7.1). Let (R(·, t), S(·, t), U (·, t), u(·, t)) be the solution of system
(1.8) with initial condition

(
R0, S0, U 0, u0

) ∈ Y.

(i) If �0 ≥ 0, then

lim
t→∞(R(·, t), S(·, t), U (·, t), u(·, t)) = (R∗(·), S∗(·), 0, 0).

(ii) If �0 < 0, then system (1.8) admits a unique positive steady-state solution
(R̂(·), Ŝ(·), Û (·), û(·)). In addition, if the initial condition satisfies (R0, S0, U 0,

u0) ∈ Y0, then

lim
t→∞(R(x, t), S(x, t), U (x, t), u(x, t)) =

(
R̂(x), Ŝ(x), Û (x), û(x)

)
,

uniformly for x ∈ [0, 1], where R̂(·) = R∗(·) − ŴR(·), Ŝ(·) = S∗(·) − ŴS(·),
Û (·) = ŴR(·) + ŴS(·), and (ŴR(·), ŴS(·), û(·)) are given by Lemma 7.2.
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Proof Part (i) was proved in Theorem 2.2(i), and we only need to prove Part (ii).
Since systems (1.8) and (7.8) are equivalent, it suffices to study system (7.8) with
initial data in Y′ (see (7.9)) (note that (R0, S0, U0, u0) ∈ Y iff (WR, WS, u, W ) =
(R∗ − R0, S∗ − S0, u0, WR + WS − U ) ∈ Y′).

Define Y′
0 := {(WR, WS, u, W ) ∈ Y′ : u 	≡ 0}, and the complementary set

∂Y′
0 := Y′ − Y′

0 = {(WR, WS, u, W ) ∈ Y′ : u ≡ 0 in [0, 1]}
= {(WR, WS, u, W ) ∈ Y′ : WR + WS − W ≡ u ≡ 0 in [0, 1]}.

We first show that Y′ is positively invariant for system (7.8). Indeed, fix P0 :=(
W 0

R, W 0
S , u0, W 0

) ∈ Y′ and let (WR(·, t), WS(·, t), u(·, t), W (·, t)) be the solution
of system (7.8) with initial data P0. Motivated by (7.7), we set

⎧
⎪⎨

⎪⎩

R(x, t) = R∗(x) − WR(x, t),

S(x, t) = S∗(x) − WS(x, t),

U (x, t) = WR(x, t) + WS(x, t) − W (x, t).

Then (R(x, t), S(x, t), U (x, t), u(x, t)) satisfies system (1.8) (by (7.9)) and R(·, 0),
S(·, 0), u(·, 0) are non-negative, and there exists Q′ > 0 such that

U (x, 0) ≤ Q′u(x, 0) for all x ∈ [0, 1].

By Corollary 4.1, it follows that R(·, t) ≥ 0, S(·, t) ≥ 0, u(·, t) ≥ 0, and there exists
Q′′ > 0 such that

U (x, t) ≤ Q′′u(x, t) for all x ∈ [0, 1] and t > 0.

This implies that

(WR(·, t), WS(·, t), u(·, t), W (·, t)) ∈ Y′ for all t ≥ 0.

Thus, we can define the solution semiflow �̃t : Y′ → Y′ of (7.8) by

�̃t (P0) = (WR(·, t), WS(·, t), u(·, t), W (·, t)), ∀ t ≥ 0,

where (WR, WS, u, W ) is the solution of (7.8) with initial data

P0 =
(

W 0
R, W 0

S , u0, W 0
)

∈ Y′.

Fix P0 ∈ Y′
0, and let ω̃ := ω̃(P0) be the omega limit set of P0 for �̃t . Let

R0 = R∗ − W 0
R, S0 = S∗ − W 0

S , U 0 = W 0
R + W 0

S − W 0 for x ∈ [0, L],
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then
(

R0, S0, U 0, u0
)

∈ Y0 ⇐⇒
(

W 0
R, W 0

S , u0, W 0
)

∈ Y′
0.

It follows from the fourth equation in system (7.8) that limt→∞ W (·, t) = 0 regard-
less of initial condition P0 ∈ Y′. Thus, there exists a set I ⊂ C([0, 1], R

3+) such that
ω̃ := ω̃(P0) = I × {0}. ��
Claim 7.5 I ⊂ Y′′.

For each (W 0
R, W 0

S , u0) ∈ I, we have
(

W 0
R, W 0

S , u0, 0
)

∈ ω̃ ⊂ Y′,

where the last inclusion follows from Lemma 4.2. By the definition of Y′, we deduce
(W 0

R, W 0
S , u0) ∈ Y′′. This proves the claim.

Claim 7.6 I is compact, invariant and internal chain transitive for the semiflow �t :
Y′′ → Y′′.

It is straight forward to see that I ×{0} is compact and invariant with respect to �̃t iff
I is compact and invariant with respect to �t . In view of Lemma 4.2, it follows that
for any (WR(·), WS(·), u(·)) ∈ C([0, 1], R

3+) with (WR(·), WS(·), u(·), W (·)) ∈ ω̃,
there holds

�̃t |ω̃ (WR(·), WS(·), u(·), W (·)) = (�t (WR(·), WS(·), u(·)), 0), (7.12)

where �t is the semiflows associated with (7.10) on Y′′. Given any a, b ∈ I and
any ε, T > 0. Since (a, 0), (b, 0) ∈ I × {0} = ω̃ and ω̃ is a compact, invariant
and internal chain transitive set for �̃t [see, e.g., Hirsch et al. (2001) or (Zhao 2003,
Lemma 1.2.1′)], it follows from the definition (see, e.g., Hirsch et al. (2001) or (Zhao
2003, page 8)) that there is a finite sequences {ti }n−1

i=1 with ti ≥ T, ∀ 1 ≤ i ≤ n − 1,
and {(χi , 0)}n

i=1 ⊆ ω̃ = I × {0} with (χ1, 0) = (a, 0), (χn, 0) = (b, 0) such that

dist
(
�̃ti−1(χi−1, 0), (χi , 0)

)
< ε, ∀ 2 ≤ i ≤ n. (7.13)

From (7.12), (7.13) as well as the above discussions, it follows that there is finite
sequences {ti }n−1

i=1 with ti ≥ T, ∀ 1 ≤ i ≤ n − 1, and {χi }n
i=1 ⊆ I with χ1 = a,

χn = b such that
dist

(
�ti−1(χi−1), χi

)
< ε, ∀ 2 ≤ i ≤ n.

This shows that I is a compact, invariant and internal chain transitive set for �t :
Y′′ → Y′′. Thus, the proof of the claim is finished.

Thus, fromLemma 7.2 and (Zhao 2003, Theorem 1.2.2) we can conclude that either
I = {(0, 0, 0)} or I = {(ŴR(·), ŴS(·), û(·))}. Since �0 < 0, Theorem 2.2 (ii) says
that lim inf t→∞ u(·, t) > 0, i.e. I 	= {(0, 0, 0)}. Therefore, we must have

123



1820 S.-B. Hsu et al.

I =
{
(ŴR(·), ŴS(·), û(·))

}
.

This, together with (7.7), implies that Part (ii) holds. ��

Proof of Theorem 2.3(ii’) First, it follows from Theorem 2.1 that system (1.8) gener-
ates a semiflow in Y. Let d0 be given by Lemma 7.1. If d ∈ (0, d0), then Lemma 7.1
says that �0 < 0. Theorem 2.3(ii’) follows from Theorem 7.1(ii). ��

8 Discussion

In this paper, we study the growth of a single phytoplankton species consuming “CO2”
(dissolved CO2 and carbonic acid) and “CARB” (bicarbonate and carbonate ions) in
a poorly/partially mixed habitat (e.g., the unstirred chemostat, or the water columns
of lakes and oceans), where “CO2” and “CARB” can be stored within individuals
for later consumption. Our proposed system (1.8), and the general version (1.12) are
motivated by the previous works (Grover 2009, 2011; Hsu et al. 2010; Huisman et al.
1999; Hsu and Waltman 1993; Klausmeier and Litchman 2001; Mei et al. 2016; Nie
et al. 2016; Van de Waal 2011; Yoshiyama et al. 2009).

For the general system (1.12), we first establish the well-posedness results (The-
orem 2.1 and Proposition 2.2), and investigate the extinction/persistence of the
phytoplankton species (Theorem 2.2). The positive constant Q∗ in (2.3) plays an
important role in proof of the well-posedness results of system (1.12). From the
assumptions (H1) and (H2), it is easy to see that Q∗ exists. Inspired by [Grover
2011, Eq. (5)], we will provide an explicit relation between Q∗ and the parameters
on the practical examples of growth rate and uptake rates. As in Grover (2011), μ(Q)

takes the form in (1.2), fN (N , Q) takes the form in (1.3) together with (1.4), and we
impose the following condition

μ∞ ≥ ρlow
max,R + ρlow

max,S

Q∗ − Qmin
. (8.1)

Since μ(Q∗) = μ∞
(
1 − Qmin

Q∗
)
, it follows that (8.1) is equivalent to

ρlow
max,R + ρlow

max,S − μ(Q∗)Q∗ ≤ 0. (8.2)

Note that

fN (N∗(x), Q∗) = ρN (Q∗) N∗(x)

kN + N∗(x)
= ρlow

max,N · N∗(x)

kN + N∗(x)
≤ ρlow

max,N .

Then (8.1) or (8.2) implies that

fR
(
R∗(x), Q∗) + fS

(
R∗(x), Q∗) − μ(Q∗)Q∗ ≤ 0,

123



Single species growth consuming inorganic carbon with… 1821

which coincides with the definition of Q∗ in (2.3). More biological interpretations
on (8.1) can be found in (Grover 2011, Section 2). In view of Theorem 2.2, we see
that the extinction/persistence of the phytoplankton species is determined by the death
rate m, and the principal eigenvalue �0 of the nonlinear eigenvalue problem (2.8).
The latter depends on (R∗(x), S∗(x)), the unique positive steady-state solution of
system (2.1). The eigenvalue �0 depends also on the conversion rate between “CO2”
and “CARB” (ωr and ωs), the physical transport characteristics of the habitat (i.e. the
diffusivity or the advection), uptake rates, and growth rate. Itwill be of practical interest
to understand the dependence of �0 on the parameters of the nonlinear eigenvalue
problem (2.8). We leave this challenging problem for future investigation.

When we specialize in the chemostat model (1.8), Theorem 2.3 reveals that there is
a unique critical diffusion rate d0 such that the species will go to extinct (resp. persist)
if the diffusion d is greater than or equal to d0 (resp. d is less than d0). If we impose
the additional condition (H7), then there exists a unique positive steady state solution
of system (1.8) when the species persists, and the unique positive steady state solution
is globally asymptotically stable. Next, we show that several practical examples can
satisfy assumption (H7):

• Assume that fN (N , Q) = ρN (Q) N
kN +N takes the form (1.3) with (1.4) for all

N ≥ 0 and Qmin ≤ Q ≤ Qmax. We first extend the function fN (N , Q) in this
case to be defined in R

2+:

f̂N (N , Q) = ρ̂N (Q)
N

kN + N
,

where

ρ̂N (Q) =
{

ρ(Qmax) + ρ(Qmin)−ρ(Qmax)
Qmin−Qmax

(Q − Qmax), for 0 ≤ Q ≤ Q B,

0, for Q > Q B,

and

Q B = Qmax + ρ(Qmax)
ρ(Qmin) − ρ(Qmax)

Qmax − Qmin
> Qmax.

Then f̂N (N , Q) satisfies (H2), and (H7) holds if

⎧
⎪⎨

⎪⎩

ωs − ρ
high
max,R−ρlow

max,R
Qmax−Qmin

≥ 0,

ωr − ρ
high
max,S−ρlow

max,S
Qmax−Qmin

≥ 0.

• Assume that fN (N , Q) = ρN (Q) N
kN +N takes the form (1.3) with (1.5) for all

N ≥ 0 and Qmin ≤ Q ≤ Qmax. For this case, Qmax = Q B , where Q B is given in
(H2). If {

ωs − ρmax,R
Qmax−Qmin

≥ 0,

ωr − ρmax,S
Qmax−Qmin

≥ 0,
(8.3)
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then (H7) holds. Here, we can give some realistic parameters such that (8.3) is
valid, and hence, (H7) holds. For example, ωr ranges from 2000 d−1 to 4000
d−1, and ωs ranges from 15 d−1 to 25 d−1 in Nie et al. (2016); Qmin = 9,
Qmax = 17µmol mm−3, ρmax,R = 8.2, and ρmax,S = 7.3µmol mm−3 d−1 in
Van de Waal (2011).

• If fN (N , Q) = ρN
N

kN +N takes the form (1.3) with (1.6), then (H7) automatically
holds.

Understanding extinction/persistence of a single species is a first step to the study
of coexistence of multiple species in competition for resources. Thus, this work paves
the way for the investigation of competing system consisting of two phytoplankton
species with ratio dependence. The other extensions of the model discussed in this
paper is to include the factors of respiration and light availability since carbon is lost
by respiration and the light reaction of photosynthesis provides the energy for carbon
assimilation (Van de Waal 2011). In the Supplementary Information of Van de Waal
(2011), the authors assumed that the respiration rate is proportional to the size of the
transient carbon pool, and they further assumed that uptake rates include self-shading
by the phytoplankton population, that is, an increase in population density will reduce
light intensity. In order to reflect the vertical heterogeneity in the water column, light
intensity usually involves nonlocal terms in depth (see e.g., Huisman et al. 1999;
Klausmeier and Litchman 2001; Yoshiyama et al. 2009), which make mathematical
analysis much more complicated. We will combine the ideas developed in this paper
with those arguments in Du and Hsu (2010) and Hsu and Lou (2010) to study a more
realistic system that phytoplankton species compete for inorganic carbon with internal
storage, and light in a spatially variable habitat in which carbon is lost by respiration.
We also leave this interesting project for future study.

It is worth pointing out that the main ideas used in this paper are closely related
to the analysis of the ODE system (1.1) or (1.7). Recall that the phytoplankton-free
equilibrium (R, S, Q, u) = (R∗, S∗, Q∗, 0) of (1.1) is given in (2.4) and (2.5), and it
is not hard to show that its local stability is determined by the sign of μ(Q∗) − D. In
fact, we can further show that the population is washed out if μ(Q∗) − D ≤ 0, and
persistence of the species occurs if μ(Q∗)− D > 0. Consider the eigenvalue problem
associated with the ODE system (1.1) or (1.7):

⎧
⎨

⎩

fR

(
R∗, ϕ

φ

)
φ + fS

(
S∗, ϕ

φ

)
φ − Dϕ + �ϕ = 0,

μ
(

ϕ
φ

)
φ − Dφ + �φ = 0,

(8.4)

where ϕ and φ are both constants. Then it follows from the relations (2.4) and (2.5) that
�0 = −(μ(Q∗)− D) is the principal eigenvalue of system (8.4) corresponding to the
eigenfunction (ϕ, φ) = (Q∗, 1) � (0, 0). Thus, the extinction/persistence of system
(1.1) or (1.7) can be determined by the principal eigenvalue �0 = −(μ(Q∗) − D),
which is parallel to Theorem 2.2 for the PDE system. In order to obtain the uniqueness
and global stability of the positive equilibrium of (1.1) or (1.7), we comment that a
condition similar to (H7) is needed.

In closing, we describe a quota-structured system with spatial variations related to
this paper. In (1.1), we have assumed that the quota per individual varies dynamically
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and the dynamics of quota also satisfies an ordinary differential equation. The simplest
model associated with (1.1) is under the assumption that the consumption of resource
and production of populations are directly proportional through a quota constant q,
leading to the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d R
dt = (

R(0) − R
)

D − q fR(R)u − ωr R + ωs S,

d S
dt = (

S(0) − S
)

D − q fS(S)u + ωr R − ωs S,

du
dt = [ fR(R) + fS(S) − D] u,

R(0) ≥ 0, S(0) ≥ 0, u(0) ≥ 0.

The other modeling associated with system (1.1) is to assume that quotas differ among
individuals at any instant, and the distribution of stored resource quota over individual
cells at each location is governed by a structured populationmodel [see, e.g.,Diekmann
et al. (1984) and Diekmann and Metz (1986) and Section 2 of Grover et al. (2012)].
The associated system takes the forms:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d R(t)
dt = (R(0) − R(t))D − fR(R)

∫ qmax
qmin
2

g(q)n(t, q)dq − ωr R + ωs S,

d S(t)
dt = (S(0) − S(t))D − fS(S)

∫ qmax
qmin
2

g(q)n(t, q)dq + ωr R − ωs S,

∂n(t,q)
∂t = [ fR(R) + fS(S)]

{
− ∂(g(q)n(t,q))

∂q − b(q)n(t, q) + 4b(2q)n(t, 2q)
}

−Dn(t, q),

R(0) ≥ 0, S(0) ≥ 0, n(0, q) = n0(q),

n(t, qmin
2 ) = 0.

(8.5)
Here t denotes time, q stands for the size of an individual cell. n is the population
density function, that is,

∫ q2
q1

n(t, q)dq represents the number of cellswith size between
q1 and q2 at time t . The functions b(q) and g(q) are the rates at which cells of size q
divide and grow, respectively. We refer the Appendix in Diekmann et al. (1984) (see
also Diekmann and Metz (1986) and Section 2 of Grover et al. (2012)) for detailed
descriptions of the following term

−∂(g(q)n(t, q))

∂q
− b(q)n(t, q) + 4b(2q)n(t, 2q),

which is related to the population operator proposed in Diekmann et al. (1984) and
Diekmann and Metz (1986). Encouraged by the work (Grover et al. 2012), we will
also investigate a system that combines the structured population model (8.5) with
the physical transport equations governing spatial distributions of populations and
resources.
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