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Abstract. Inverse eigenvalue and singular value problems have been widely discussed for decades. The well-
known result is the Weyl-Horn condition, which presents the relations between the eigenvalues and singular values of
an arbitrary matrix. This result by Weyl-Horn then leads to an interesting inverse problem, i.e., how to construct a
matrix with desired eigenvalues and singular values. In this work, we do that and more. We propose an eclectic mix
of techniques from differential geometry and the inexact Newton method for solving inverse eigenvalue and singular
value problems as well as additional desired characteristics such as nonnegative entries, prescribed diagonal entries,
and even predetermined entries. We show theoretically that our method converges globally and quadratically, and we
provide numerical examples to demonstrate the robustness and accuracy of our proposed method. Having theoretical
interest, we provide in the appendix a necessary and sufficient condition for the existence of a 2 × 2 real matrix, or
even a nonnegative matrix, with prescribed eigenvalues, singular values, and main diagonal entries.
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1. Introduction. Let |λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ 0 and σ1 ≥ · · · ≥ σn ≥ 0 be the eigenvalues
and singular values of a given n × n matrix A. In [45] Weyl showed that sets of eigenvalues and
singular values satisfy the following necessary condition:

k∏
j=1

|λj | ≤
k∏
j=1

σj , k = 1, . . . , n− 1, (1.1a)

n∏
j=1

|λj | =
n∏
j=1

σj . (1.1b)

Moreover, Horn [29] proved that condition (1.1), called the Weyl-Horn condition, is also sufficient for
constructing triangular matrices with prescribed eigenvalues and singular values. Research interest
in inverse eigenvalue and singular value problems can be tracked back to the open problem raised
by Higham in [28, Problem 26.3], as follows:

Develop an efficient algorithm for computing a unit upper triangular n × n matrix with
the prescribed singular values σ1, . . . , σn, where

∏n
j=1 σj = 1.

This problem, which was solved by Kosowski and Smoktunowicz [32], leads to the following inter-
esting inverse eigenvalue and singular value problem (IESP):

(IESP) Given two sets of numbers λ = {λ1, . . . , λn} and σ = {σ1, . . . , σn} satisfying (1.1),
find a real n× n matrix with eigenvalues λ and singular values σ.

The following factors make the IESP difficult to solve:
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• Often the desired matrices are real. This problem was solved by the authors of [9] with
prescribed real eigenvalues and singular values. The method for finding a general real-
valued matrix with prescribed complex-conjugate eigenvalues and singular values was also
investigated in [33]. In this work, we take an alternative approach to tackle this problem
and add further constraints.
• Often the desired matrices are structured. Corresponding to physical applications, the

recovered matrices often preserve some common structure such as nonnegative entries or
predetermined diagonal entries [8, 46]. In this paper, specifically, we offer the condition
of the existence of a nonnegative matrix provided that eigenvalues, singular values, and
diagonal entries are given. Furthermore, solving the IESP with respect to the diagonal
constraint is not enough because entries of the recovered matrices should preserve certain
patterns, for example, non-negativity, which correspond to original observations. How to
tackle this structured problem is the main thrust of this paper.

The IESP can be regarded as a natural generalization of the inverse eigenvalue problems, which
is known for its a wide variety of applications such as the pole assignment problem [6, 34, 20], applied
mechanics [25, 19, 38, 18, 15], and inverse Sturm-Liouville problem [26, 3, 24, 37]. Thus applica-
tions of the IESP could be found in wireless communication [39, 17, 43] and quantum information
science [21, 30, 46]. Research results advanced thus far for the IESP do not fully address the
above scenarios. Often, given a set of data, the IESP is studied in parts. That is, there have been
extensive investigations of the conditions for the existence of a matrix when the singular values and
eigenvalues are provided (i.e., the Weyl-Horn condition [45, 29]), when the singular values and main
diagonal entries are provided (i.e., the Sing-Thompson condition [41, 42]), or when the eigenvalues
and main diagonal entries are provided (i.e., the Mirsky condition [36]). Also, the above conditions
have given rise to numerical approaches, as found in [5, 16, 8, 9, 22, 32, 49].

Our significance in this work is to consider these conditions together. One relatively close result
is given in [46], where the authors consider a new type of IESP that requires that all three constraints,
i.e., eigenvalues, singular values, and diagonal entries, be satisfied simultaneously. Theoretically, Wu
and Chu generalize the classical Mirsky, Sing-Thompson, and Weyl-Horn conditions and provide one
sufficient condition for the existence of a matrix with prescribed eigenvalues, singular values, and
diagonal entries when n ≥ 3. Numerically, Wu and Chu establish a dynamic system for constructing
such a matrix, in which real eigenvalues are given. In this work, we solve an IESP with complex
conjugate eigenvalues and with entries fixed at certain locations. Also, we provide the necessary
and sufficient condition of the existence of a 2× 2 nonnegative matrix with prescribed eigenvalues,
singular values, and diagonal elements. Note that, in general, the solution of the IESP is not unique
or difficult to find once structured requirements are added. To solve an IESP with some specific
feature, we combine techniques from differential geometry and for solving nonlinear equations.

We organize this paper as follows. In section 2, we propose the use of the Riemannian inexact
Newton method for solving an IESP with complex conjugate eigenvalues. In section 3, we show
that the convergence is quadratic. In section 4, we demonstrate the application of our technique to
an IESP with a specific structure that includes nonnegative or predetermined entries to show the
robustness and efficiency of our proposed approaches. The concluding remarks and the solvability
of the IESP of a 2× 2 matrix are given in section 5 and the appendix, respectively.

2. Riemannian inexact Newton method. In this section, we explain how the Riemannian
inexact Newton method can be applied to the IESP. The problem of optimizing a function on a matrix
manifold has received much attention in the scientific and engineering fields due to its peculiarity
and capacity. Its applications include, but are not limited to, the study of eigenvalue problems [12,
13, 7, 1, 2, 14, 10, 50, 52, 48, 46, 51], matrix low rank approximation [4, 27], and nonlinear matrix
equations [44, 11]. Numerical methods for solving problems involving matrix manifolds rely on
interdisciplinary inputs from differential geometry, optimization theory, and gradient flows.
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To begin, let O(n) ⊂ Rn×n be the group of n × n real orthogonal matrices, and let λ =
{λ1, . . . , λn} and σ = {σ1, . . . , σn} be the eigenvalues and singular values of an n × n matrix. We
assume without loss of generality that:

λ2i−1 = αi + βi
√
−1, λ2i = αi − βi

√
−1, i = 1, . . . , k; λi ∈ R, i = 2k + 1, . . . , n,

where αi, βi ∈ R with βi 6= 0 for i = 1, . . . , k, and we define the corresponding block diagonal matrix

Λ = diag

{[
α1 β1

−β1 α1

]
, . . . ,

[
αk βk
−βk αk

]
, λ2k+1, . . . , λ2n

}
and the diagonal matrix

Σ = diag {σ1, . . . , σn} .

Then the IESP is equivalent to finding matrices U, V, Q ∈ O(n), and

W ∈ W(n) := {W ∈ Rn×n |Wi,j = 0 if Λi,j 6= 0 or i ≥ j, for 1 ≤ i, j ≤ n},

which satisfy the following equation:

F (U, V,Q,W ) = UΣV > −Q(Λ +W )Q> = 0. (2.1)

Here, we may assume without loss of generality that Q is an identity matrix and simplify Eq. (2.1)
as follows:

F (U, V,W ) = UΣV > − (Λ +W ) = 0. (2.2)

Let X = (U, V,W ) ∈ O(n) × O(n) ×W(n). Upon using Eq. (2.2), we can see that we might
solve the IESP by

finding X ∈ O(n)×O(n)×W(n) such that F (X) = 0, (2.3)

where F : O(n)×O(n)×W(n)→ Rn×n is continuously differentiable. By making an initial guess,
X0, one immediate way to solve Eq. (2.3) is to apply the Newton method and generate a sequence
of iterates by solving

DF (Xk)[∆Xk] = −F (Xk), (2.4)

for ∆Xk ∈ TXk
(O(n)×O(n)×W(n)) and set

Xk+1 = RXk
(∆Xk),

where DF (Xk) represents the differential of F at Xk and R is a retraction on O(n)×O(n)×W(n).
Since Eq. (2.4) is an underdetermined system, it may have more than one solution. Let DF (Xk)∗ be
the adjoint operator of DF (Xk). In our calculation, we choose the solution ∆Xk with the minimum
norm by letting [35, Chap. 6]

∆Xk = DF (Xk)∗[∆Zk], (2.5)

where ∆Zk ∈ TF (Xk)(Rn×n) is a solution for

(DF (Xk) ◦DF (Xk)∗) [∆Zk] = −F (Xk). (2.6)
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Note that the notation ◦ represents the composition of two operators DF (Xk) and DF (Xk)∗. This
implies that the operator DF (Xk) ◦DF (Xk)∗ is symmetric and positive semidefinite. If, as is the
general case, the operator DF (Xk) ◦ DF (Xk)∗ : TF (Xk)(Rn×n) → Rn×n is invertible, we can
compute the optimal solution in (2.5).

Note that solving for the root of Eq. (2.6) could be unnecessary and computationally time-
consuming, and that the linear model given by Eq. (2.6) is large-scale or the resulting iteration
Xk is far from the root of condition (2.3) [40]. By analogy with the classical Newton method [23],
we adopt the “inexact” Newton method on Riemannian manifolds, i.e., without solving Eq. (2.6)
exactly, we repeatedly apply the conjugate gradient (CG) method to find ∆Zk ∈ TF (Xk)(Rn×n),
such that:

‖(DF (Xk) ◦DF (Xk)∗)[∆Zk] + F (Xk)‖ ≤ ηk‖F (Xk)‖, (2.7)

for some constant ηk ∈ [0, 1), is satisfied. Then, we update Xk corresponding to ∆Zk until the
stopping criterion is satisfied. Here, the notation ‖ · ‖ is the Frobenius norm. Note that in our
calculation, the elements in the product space Rn×n×Rn×n×Rn×n are computed using the standard
Frobenius inner product:

〈(A1, A2, A3), (B1, B2, B3)〉F := 〈A1, B1〉+ 〈A2, B2〉+ 〈A3, B3〉 , (2.8)

where 〈A,B〉 := trace(AB>) for any A,B ∈ Rn×n and the induced norm ‖X‖F =
√
〈X,X〉F (or,

simply, 〈X,X〉 and ‖X‖ without the risk of confusion) for any X ∈ Rn×n × Rn×n × Rn×n.
Then, the linear mapping DF (Xk) at ∆Xk = (∆Uk,∆Vk,∆Wk) ∈ TXk

(O(n) × O(n) ×W(n))
is given by:

DF (Xk)[∆Xk] = ∆UkΣV >k + UkΣ∆V >k −∆Wk.

Let DF (Xk)∗ : TF (Xk)(Rn×n)→ TXk
(O(n)×O(n)×W(n)) be the adjoint of the mapping DF (Xk).

The adjoint DF (Xk)∗ is determined by the following:

〈∆Zk, DF (Xk)[∆Xk]〉 = 〈DF (Xk)∗[∆Zk],∆Xk〉

and can be expressed as follows:

DF (Xk)∗[∆Zk]= (∆Uk,∆Vk,∆Wk),

where

∆Uk =
1

2
(∆ZkVkΣ> − UkΣV >k ∆Z>k Uk),

∆Vk =
1

2
(∆Z>k UkΣ− VkΣ>U>k ∆ZkVk),

∆Wk = −H �∆Zk,

with the notation � representing the Hadamard product (see [12, 51] for a similar discussion).
There is definitely no guarantee that the application of the inexact Newton method can achieve

a sufficient decrease in the size of the nonlinear residual ‖F (Xk)‖. This provides motivation for
deriving an iterate for which the size of the nonlinear residual is decreased. One way to do this
is to update the Newton step ∆Xk obtained from Eq. (2.5) by choosing θ ∈ [θmin, θmax], with
0 < θmin < θmax < 1, and setting

∆̂Xk = ∆Xk, η̂k =
‖F (Xk) +DF (Xk)∆Xk‖

‖F (Xk)‖
, (2.9)
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and ηk = η̂k. Then, we update

ηk ← 1− θ(1− ηk) and ∆Xk ←
1− ηk
1− η̂k

∆̂Xk, (2.10)

while

‖F (Xk)‖ − ‖F (RXk
(∆Xk))‖ > t(1− ηk)‖F (Xk)‖,

or, equivalently,

‖F (RXk
(∆Xk))‖ < [1− t(1− ηk)]‖F (Xk)‖, (2.11)

for some t ∈ [0, 1) [23]. Let qf(·) denote the mapping that sends a matrix to the Q factor of its QR
decomposition with its R factor having strictly positive diagonal elements [1, Example 4.1.3]. Then,
for all (ξU , ξV , ξW ) ∈ T(U,V,W ) (O(n)×O(n)×W(n)), we can compute the retraction R using the
following formula:

R(U,V,W )(ξU , ξV , ξW ) = (RU (ξU ), RV (ξV ), RW (ξW )),

where

RU (ξU ) = qf(U + ξU ), RV (ξV ) = qf(V + ξV ), RW (ξW ) = W + ξW .

We call this the Riemannian inexact Newton backtracking method (RINB) and formalize this method
in Algorithm 1. To choose the parameter θ ∈ [θmin, θmax], we apply a two-point parabolic model [31,
51] to achieve a sufficient decrease among steps 6 to 9. That is, we use the iteration history to model
an approximate minimizer of the following scalar function:

f(λ) := ‖F (RXk
(λ∆Xk))‖2

by defining a parabolic model, as follows:

p(λ) = f(0) + f ′(0)λ+ (f(1)− f(0)− f ′(0))λ2,

where f(0) = ‖F (Xk)‖2, f ′(0) = 2 〈DF (Xk)[∆Xk], F (Xk)〉, and f(1) = ‖F (RXk
(∆Xk))‖2.

From (2.7), it can be shown that the function evaluation f ′(0) should be negative. Since f ′(0) <
0, if p′′(λ) = 2(f(1)− f(0)− f ′(0)) > 0, then p(λ) has its minimum at:

θ =
−f ′(0)

2(f(1)− f(0)− f ′(0))
> 0;

otherwise, if p′′(λ) < 0, we choose θ = θmax. By incorporating two types of selection, we can choose
the following:

θ = min

{
max

{
θmin,

−f ′(0)

2(f(1)− f(0)− f ′(0))

}
, θmax

}
.

as the parameter θ in Algorithm 1 [31, 51]. In the next section, we mathematically investigate the
convergence analysis of Algorithm 1.
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Algorithm 1: The Riemannian inexact Newton backtracking method [X] = RINB(σ,X0)
Input: An initial value X0

Output: A numerical solution X satisfying F (X) = 0
1 begin
2 Let ηmax ∈ [0.1), η0 = min{ηmax, ‖F (X0)‖}, and t ∈ [0, 1), and 0 < θmin < θmax < 1 be given.
3 repeat
4 Determine ∆Zk by using the CG method to (2.6) until (2.7) holds.

5 Set ∆Xk = (DF (Xk))∗∆Zk, η̂k = ‖F (Xk)+DF (Xk)∆Xk‖
‖F (Xk)‖ , ∆̂Xk = ∆Xk, and ηk = η̂k.

6 repeat
7 Choose θ ∈ [θmin, θmax].

8 Update ηk ← 1− θ(1− ηk) and ∆Xk ← 1−ηk
1−η̂k ∆̂Xk.

9 until (2.11) holds;
10 Set Xk+1 = RXk

(∆Xk) and ηk+1 = min {ηk, ηmax, ‖F (Xk+1)‖}.
11 Replace k by k + 1.
12 until ‖F (Xk)‖ < ε;
13 X = Xk.
14 end

3. Convergence Analysis. By combining the classical inexact Newton method [23] with op-
timization techniques on matrix manifolds, Algorithm 1 provides a way to solve the IESP. However,
we have yet to theoretically discuss the convergence analysis of Algorithm 1. In this section, we
provide a theoretical foundation for the RINB method, and show that this RINB method converges
globally and finally converges quadratically when Algorithm 1 does not terminate prematurely. We
address this phenomenon in the following:

Lemma 3.1. Algorithm 1 does not break down at some Xk if and only if F (Xk) 6= 0 and the
inverse of DF (Xk) ◦DF (Xk)∗ exists.

Next, we provide an upper bound for the approximate solution ∆̂Xk in Algorithm 1.

Theorem 3.2. Let ∆Zk ∈ TF (Xk)(Rn×n) be a solution that satisfies condition (2.7) and

∆̂Xk = DF (Xk)∗[∆Zk].

Then,

(a) ‖∆̂Xk‖ ≤ (1 + η̂k)‖DF (Xk)†‖‖F (Xk)‖, (3.1a)

(b) ‖σk(η)‖ ≤ 1 + ηmax

1− ηmax
(1− η)‖DF (Xk)†‖d‖F (Xk)‖, (3.1b)

where η̂k is defined in Eq. (2.9), and σk is the backtracking curve used in Algorithm 1, which is
defined by the following:

σk(η) =
1− η
1− η̂k

∆̂Xk

with η̂k ≤ η ≤ 1, and

‖DF (Xk)†‖ := max
‖∆Z‖=1

‖DF (Xk)†[∆Z]‖

represents the norm of the pseudoinverse of DF (Xk).
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Proof. Let rk = (DF (Xk) ◦DF (Xk)∗)[∆Zk] + F (Xk). We see that

‖∆̂Xk‖ ≤ ‖DF (Xk)∗ ◦ [DF (Xk) ◦DF (Xk)∗]−1‖‖rk − F (Xk)‖
≤ (1 + η̂k)‖DF (Xk)†‖‖F (Xk)‖

and

‖σk(η)‖ =
1− η
1− η̂k

‖DF (Xk)†(rk − F (Xk))‖ ≤ 1 + η̂k
1− η̂k

(1− η)‖DF (Xk)†‖‖F (Xk)‖

≤ 1 + ηmax

1− ηmax
(1− η)‖DF (Xk)†‖‖F (Xk)‖.

In our subsequent discussion, we assume that Algorithm 1 does not break down and there is a
unique limit point X∗ of {Xk}. Since F is continuously differentiable, we have the following:

‖DF (X)†‖ ≤ 2‖DF (X∗)
†‖ (3.2)

whenever X ∈ Bδ(X∗) for a sufficiently small constant δ > 0. Here, the notation Bδ(X∗) represents
a neighborhood of X∗ consisting of all points X such that ‖X − X∗‖ < δ. By condition (3.1), we
can show without any difficulty that whenever Xk is sufficiently close to X∗,

‖∆̂Xk‖ ≤ (1 + ηmax)‖DF (X∗)
†‖‖F (Xk)‖, (3.3)

‖σk(η)‖ ≤ Γ(1− η)‖F (Xk)‖, η̂k ≤ η ≤ 1,

where Γ is a constant independent of k defined by

Γ = 2
1 + ηmax

1− ηmax
‖DF (X∗)

†‖.

New, we show that the sequence of {F (Xk)} eventually converges to zero.
Theorem 3.3. Assume that Algorithm 1 does not break down. If {Xk} is the sequence generated

in Algorithm 1, then

lim
k→∞

F (Xk) = 0.

Proof. Observe that

‖F (Xk)‖ = ‖F (RXk−1
(∆Xk−1))‖ ≤ (1− t(1− ηk−1))‖F (Xk−1)‖

≤ ‖F (X0)‖
k−1∏
j=0

(1− t(1− ηj)) ≤ ‖F (X0)‖e
−t

k−1∑
j=0

(1−ηj)

.

Since t > 0 and lim
k→∞

k−1∑
j=0

(1− ηj) =∞, we have lim
k→∞

F (Xk) = 0.

In our iteration, we implement the repeat loop among steps 6 to 9 by selecting a sequence {θj},
with θj ∈ [θmin, θmax]. For each loop, correspondingly, we let η

(1)
k = η̂k and ∆X(1) = ∆̂Xk, and for

j = 2, . . . , we let

η
(j)
k = 1− θj−1(1− η(j−1)

k ),

∆X
(j)
k =

1− η(j)
k

1− η̂k
∆̂Xk. (3.4)
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By induction, then, we can easily show that:

∆X
(j)
k = Θj−1∆̂Xk, 1− η(j)

k = Θj−1(1− η̂k),

where

Θj−1 =

j−1∏
`=1

θ`, j ≥ 2. (3.5)

That is, the sequence {∆X(j)
k }j is a strictly decreasing sequence satisfying lim

j→∞
∆X

(j)
k = 0, and

{η(j)
k }j is a sequence satisfying η

(j)
k ≥ η̂k for j ≥ 1, and lim

j→∞
η

(j)
k = 1. Based on these observations,

next, we show that the repeat loop terminates after a finite number of steps.
Theorem 3.4. Let {∆̂Xk} be the sequence generated from Algorithm 1, i.e.,

‖(DF (Xk)[∆̂Xk] + F (Xk)‖ ≤ ηk‖F (Xk)‖.

Then, once j is large enough, the sequence {η(j)
k }j satisfies the following:

‖F (Xk) +DF (Xk)[∆X
(j)
k ]‖ ≤ η(j)

k ‖F (Xk)‖,

‖F (RXk
(∆X

(j)
k ))‖ ≤ (1− t(1− η(j)

k ))‖F (Xk)‖. (3.6)

Proof. Let η̂k be defined in Eq. (2.9) with ∆Xk = ∆̂Xk, and εk = (1−t)(1−η̂k)‖F (Xk)‖
‖∆̂Xk‖

. Since F

is continuously differentiable, for εk > 0, there exists a sufficiently small δ > 0 such that ‖∆X‖ < δ
implies that:

‖F (RXk
(∆X))− F (RXk

(0Xk
))−DF (RXk

(0Xk
))[∆X]‖ ≤ εk‖∆X‖,

where 0Xk
is the origin of TXk

(O(n)×O(n)×W(n)).
For δ > 0, we let

ηmin = max

{
η̂k, 1−

(1− η̂k)δ

‖∆̂Xk‖

}
.

Note that once j is sufficiently large,

η
(j)
k − ηmin ≥

(
δ

‖∆̂Xk‖
−Θj−1

)
(1− η̂k)≥0. (3.7)

For sufficiently large j, we consider the sequence {∆X(j)
k }j in Eq. (3.4) with η

(j)
k ∈ [ηmin, 1). We

can see that:

‖∆X(j)
k ‖ = ‖

1− η(j)
k

1− η̂k
∆̂Xk‖ ≤

1− ηmin

1− η̂k
‖∆̂Xk‖ ≤ δ.

This implies that:

‖F (Xk) +DF (Xk)[∆X
(j)
k ]‖ ≤

∥∥∥∥∥F (Xk) +DF (Xk)

(
1− η(j)

k

1− η̂k
∆̂Xk

)∥∥∥∥∥
≤

∥∥∥∥∥η(j)
k − η̂k
1− η̂k

F (Xk) +
1− η(j)

k

1− η̂k

(
DF (Xk)[∆̂Xk] + F (Xk)

)∥∥∥∥∥
≤
η

(j)
k − η̂k
1− η̂k

‖F (Xk)‖+
1− η(j)

k

1− η̂k
η̂k‖F (Xk)‖

= η
(j)
k ‖F (Xk)‖,
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and

F (RXk
(∆X

(j)
k ))‖ = ‖F (RXk

(∆X
(j)
k )− F (RXk

(0Xk
))−DF (RXk

(0Xk
))[∆X

(j)
k ]‖

+‖F (Xk) +DF (Xk)[∆X
(j)
k ]‖

= εk‖∆X(j)
k ‖+ η

(j)
k ‖F (Xk)‖

=
(1− t)(1− η̂k)‖F (Xk)‖

‖∆̂Xk‖

∥∥∥∥∥1− η(j)
k

1− η̂k
∆̂Xk

∥∥∥∥∥+ η
(j)
k ‖F (Xk)‖

= (1− t(1− η(j)
k ))‖F (Xk)‖.

From the proof of Theorem 3.4, we can see that for each k, the repeat loop for the backtracking
line search will terminate in a finite number of steps once condition (3.7) is satisfied. Moreover,
Theorem 3.3 and condition (3.3) imply the following:

lim
k→∞

‖∆̂Xk‖ = 0.

That is, if k is sufficient large, i.e., ‖∆̂Xk‖ is small enough, then from the proof of Theorem 3.4 we
see that condition (2.11) is always satisfied, i.e., ηk = η̂k for all sufficient large k.

To show that Algorithm 1 is a globally convergent algorithm, we have one additional requirement
for the retraction RX , i.e., there exist ν > 0 and δν > 0 such that:

ν‖∆X‖ ≥ dist(RX(∆X), X), (3.8)

for all X ∈ O(n)×O(n)×W(n) and for all ∆X ∈ TX (O(n)×O(n)×W(n)) with ‖∆X‖ ≤ δν [1].
Here “dist(·, ·)” represents the Riemannian distance on O(n)×O(n)×W(n). Under this assumption,
our next theorem shows the global convergence property of Algorithm 1. We have borrowed the
strategy for this proof from that used in [23, Theorem 3.5] to prove the nonlinear matrix equation.

Theorem 3.5. Assume that Algorithm 1 does not break down. Let X∗ be a limit point of {Xk}.
Then Xk converges to X∗ and F (X∗) = 0. Moreover, Xk converges to X∗ quadratically whenever
Xk is sufficiently close to X∗.

Proof. Suppose Xk does not converge to X∗. This implies that there exist two sequences of
numbers {kj} and {`j} for which:

Xkj ∈ Nδ/j(X∗),
Xkj+`j 6∈ Nδ(X∗),
Xkj+i ∈ Nδ(X∗), if i = 1, . . . , `j−1

kj + `j ≤ kj+1.

From Theorem 3.4, we see that the repeat loop among steps 6 to 9 of Algorithm 1 terminates
in finite steps. For each k, let mk be the smallest number such that condition (3.6) is satisfied, i.e.,

∆Xk = Θmk
∆̂Xk and ηk = 1 − Θmk

(1 − η̂k) with Θmk
being defined in Eq. (3.5). It follows from

condition (3.1b) that:

‖∆Xk‖ ≤ 2Θmk

(
1 + ηmax

1− ηmax

)
(1− ηk)‖DF (X∗)

†‖‖F (Xk)‖, (3.9)

for a sufficiently small δ and Xk ∈ Bδ(X∗), so that condition (3.2) is satisfied. Let

Γmk
= 2Θmk

(
1 + ηmax

1− ηmax

)
‖DF (X∗)

†‖.
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According to condition (3.8), there exist ν > 0 and δν > 0 such that:

ν‖∆X‖ ≥ dist (RX(∆X), X) ,

when ‖∆X‖ ≤ δν . Since F (Xk) approaches zero as k approaches infinity, for δν , condition (3.9)
implies that there exists a sufficiently large k such that:

ν‖∆Xk‖ ≥ dist (RXk
(∆Xk), Xk) (3.10)

is satisfied whenever ‖∆Xk‖ ≤ δν .
Then for a sufficiently large j, we can see from conditions (3.9) and (3.10) that:

δ

2
≤ dist(Xkj+`j , Xkj ) ≤

kj+`j−1∑
k=kj

dist(Xk+1, Xk)

=

kj+`j−1∑
k=kj

dist(RXk
(∆Xk), Xk) ≤

kj+`j−1∑
k=kj

ν‖∆Xk‖

≤
kj+`j−1∑
k=kj

νΓmk
(1− ηk)‖F (Xk)‖ ≤

kj+`j−1∑
k=kj

νΓmk

t
(‖F (Xk)‖ − ‖F (Xk+1)‖)

≤ νΓmk

t

(
‖F (Xkj )‖ − ‖F (Xkj+1

)‖
)
.

This is a contraction, since Theorem 3.3 implies that F (Xkj ) converges to zero as j approaches
infinity and Γmk

is bounded. Thus, Xk converges to X∗, and immediately, we have F (X∗) = 0.
This completes the proof of the first part.

To show that Xk converges to X∗ quadratically once Xk is sufficiently close to X∗, we let C1

and C2 be two numbers satisfying the following:

‖F (Xk+1)− F (Xk)−DF (Xk)[∆Xk]‖ ≤ C1‖∆Xk‖2,
‖F (Xk)‖ ≤ C2dist(Xk, X∗),

for a sufficiently large k. The above assumptions are true since F is second differentiable and
F (X∗) = 0. We can also observe that:

‖F (Xk+1)‖ ≤ ‖F (Xk+1)− F (Xk)−DF (Xk)[∆Xk]‖+ ‖F (Xk) +DF (Xk)[∆Xk]‖
≤ C1‖∆Xk‖2 + η̂k‖F (Xk)‖ ≤ C1(Γmk

‖F (Xk)‖)2 + ‖F (Xk)‖2

≤
(
C1Γ2C2

2 + C2
2

)
dist(Xk, X∗)

2, (3.11)

where Γ = 2

(
1 + ηmax

1− ηmax

)
‖DF (X∗)

†‖.

Since Xk converges to X∗ as k converges to infinity, for a sufficiently large k, it follows from
conditions (3.9), (3.10), (3.6), and (3.11) that:

dist(Xk+1, X∗) = lim
p→∞

dist(Xk+1, Xp) ≤
∞∑
s=k

dist
(
Xs+1, RXs+1

(∆Xs+1)
)

≤
∞∑
s=k

ν‖∆Xs+1‖ ≤
∞∑
s=k

νΓms+1
(1 + ηmax)‖F (Xs+1)‖

≤ νΓ(1 + ηmax)

∞∑
j=0

(1− t(1− ηmax))j‖F (Xk+1)‖

≤ Cdist(Xk, X∗)
2,
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for some constant C =
νΓ(1 + ηmax)

(
C1Γ2C2

2 + C2
2

)
t(1− ηmax)

.

It is true that we might assume without loss of generality that the inverse of DF (Xk)◦DF (Xk)∗

always exists numerically. However, once DF (Xk) ◦DF (Xk)∗ is ill-conditioned or (nearly) singular,
we choose an operator Ek = σkidTF (Xk)

, where σk is a constant and idTF (Xk)
is an identity operator

on TF (Xk)(Rn×n) to make DF (Xk) ◦DF (Xk)∗+ σkidTF (Xk)
well-conditioned or nonsingular. In the

calculation, this replaces the calculation in Eq. (2.6) with the following equation:

(DF (Xk) ◦DF (Xk)∗ + σkidTF (Xk)
)[∆Zk] = −F (Xk).

That is, Algorithm 1 can be modified to fit in this case by replacing the satisfaction of condition (2.7)
with the following two conditions:

‖(DF (Xk) ◦DF (Xk)∗ + σkidTF (Xk)
)[∆Zk]‖ ≤ ηk‖F (Xk)‖, (3.12a)

‖(DF (Xk) ◦DF (Xk)∗)[∆Zk] + F (Xk)‖ ≤ ηmax‖F (Xk)‖, (3.12b)

where σk := min {σmax, ‖F (Xk)‖} is a selected perturbation determined by the parameter σmax and
‖F (Xk)‖. Of course, we can provide the proof of the quadratic convergence under condition (3.12)
without any difficulty (see [51] for a similar discussion). Thus, we ignore the proof here. However, we
note that even if a selected perturbation is applied to an ill-conditioned problem, the linear operator
DF (Xk)◦DF (Xk)∗+σkidTF (Xk)

in condition (3.12a) might become nearly singular or ill-conditioned
once σk is small enough. This will prevent the iteration in the CG method from converging in fewer
than n2 steps, and cause the value of f ′(0) to not be negative. This possibility suggests that we
apply Algorithm 1 without performing any perturbation in our numerical experiments. If the CG
method cannot terminate within n2 iterations, it may be necessary to compute a new approximated
solution ∆Zk by selecting a new initial value for X0.

4. Numerical Experiments. Note that the iteration of Algorithm 1 will be trapped without
convergence to a solution if the IESP is unsolvable. As such, in our numerical experiments, we
assume the existence of a solution of an IESP solution beforehand by generating sets of eigenvalues
and singular values from a series of randomly generated matrices. For a 2× 2 case, it is certain that
Theorem A.3 in the appendix provides an alternative way to generate testing matrices. However, for
general n × n matrices, the condition of the solvability of the IESP with some particular structure
remains unknown and merits further investigation. In this section, we show how Algorithm 1 can
be applied to solve an IESP with a particular structure. We note that we performed all of the
computations in this work in MATLAB version 2016a on a desktop with a 4.2 GHZ Intel Core i7
processor and 32 GB of main memory. For our tests, we set ηmax = 0.9, θmin = 0.1, θmax = 0.9,
t = 10−4, and ε = 10−10. Also, in our computation, we emphasize two things. First, once the CG
method computed in Algorithm 1 cannot be terminated within n2 iterations, restart Algorithm 1
with a different initial value X0. Second, due to the rounding errors in numerical computation, care
must be taken in the selection of ηk so that the upper bound ηk‖F (Xk)‖ in condition (2.7) is not
too small to cause the CG method abnormal. To this end, in our experiments, we use the condition

max{ηk‖F (Xk)‖, 10−12},

instead of ηk‖F (Xk)‖.
Example 4.1. To demonstrate the capacity of our approach for solving problems that are

relatively large, we randomly generate a set of eigenvalues and a set of singular values of different
size, say, n = 20, 60, 100, 150, 200, 500, and 700 from matrices given by the MATLAB command:

A = randn(n).
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For each size, we perform 10 experiments. To illustrate the elasticity of our approach, we randomly
generate the initial value X0 = (U0, V0,W0) in the following way:

W0 = triu(randn(n)), W0(find(Λ)) = 0, and [U0, tmp, V0] = svd(Λ +W0).

In Table 4.1, we show the average residual value (Residual), the average final error (Error), as
defined by:

final error = ‖λ(Anew)− λ‖2 + ‖σ(Anew)− σ‖2,

the average number of iterations within the CG method (CGIt)], the average number of iterations
within the inexact Newton method (INMIt)], and the average elapsed time (Time), as performed by
our algorithm. In Table 4.1, we can see that the elapsed time and the average number of iterations
within the CG method increase dramatically as the size of the matrices increases. This can be
explained by the fact that the number of degrees of freedom of the problem increases significantly.
Thus, the number of the iterations required by the CG method and the required computed time increase
correspondingly. However, it is interesting to see that the required number of iterations within the
inexact Newton method remains almost the same for matrices of different sizes. One way to speed
up the entire process of iterations is to transform the problem (2.6) into a form that is more suitable
for the CG method, for example, apply the CG method with a preselected preconditioner. Still, this
selection of the preconditioner requires further investigation.

Table 4.1
Comparison of the required CGIt], INMIt], Residual, Error values, and Time for solving the IESP by Algorithm 1.

n CGIt] INMIt] Residual Error Time

20 208 9.4 5.54× 10−12 9.65× 10−13 2.47× 10−2

60 740 10 8.13× 10−12 7.23× 10−13 4.11× 10−1

100 1231 10.4 1.06× 10−12 9.74× 10−14 2.22
150 1773 10.1 1.01× 10−12 1.06× 10−13 6.82
200 1939 10.5 1.20× 10−12 1.49× 10−13 19.3
500 6070 10.6 1.47× 10−12 4.12× 10−13 665
700 8905 10.6 5.42× 10−12 7.24× 10−13 2465

Example 4.2. In this example, we use Algorithm 1 to construct a nonnegative matrix with
prescribed eigenvalues and singular values and a specific structure. We specify this IESP and call it
the IESP with desired entries (DIESP). The DIESP can be defined as follows.

(DIESP) Given a subset I = {(it, jt)}`t=1 with double subscripts, a set of real numbers
K = {kt}`t=1, a set of n complex numbers {λi}ni=1, satisfying {λi}ni=1 = {λ̄i}ni=1, and a set
of n nonnegative numbers {σi}ni=1, find a nonnegative n×n matrix A that has eigenvalues
λ1, . . . , λn, singular values σ1, . . . , σn and Ait,jt = kt for t = 1, . . . , `.

Note that once it = jt = t for t = 1, . . . , n, we investigate a numerical approach for solving the
IESP with prescribed diagonal entries. As far as we know, the research result close to this problem is
only available in [46]. However, for a general structure, no research has been conducted to implement
this investigation. To solve the DIESP, our first step is to obtain a real matrix A with prescribed
eigenvalues and singular values. Our second step is to derive entries of Q>AQ, where Q ∈ O(n),
that satisfy the nonnegative property and desired values determined by the sets I and K. We solve the
first step in the same manner as in Example 4.1, but for the second step, we consider the following
two sets L1 and L2, which are defined by:

L1 = {A ∈ Rm×n |Ait,jt = kt, for 1 ≤ t ≤ `; otherwise Ai,j = 0},
L2 = {A ∈ Rm×n |Ai,j = 0, for 1 ≤ i, j ≤ n and (i, j) ∈ I},
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and then solve the following problem:

find P ∈ L2 and Q ∈ O(n) such that H(P,Q) = Â+ P � P −QAQ> = 0, (4.1)

with Â ∈ L1. Let [A,B] := AB − BA denote the Lie bracket notation. It follows from direct
computation that the corresponding differential DH and its adjoint DH∗ have the following form [51]:

DH(P,Q)[(∆P,∆Q)] = 2P �∆P + [QAQ>,∆QQ>],

DH(P,Q)∗[∆Z] =

(
2P �∆Z,

1

2
([QAQ>,∆Z>] + [QA>Q>,∆Z])Q

)
,

and, for all (ξP , ξQ) ∈ T(P,Q)(L2 × O(n)), we can compute the retraction R using the following
formula:

R(P,Q) = (RP (ξP ), RQ(ξQ)),

where

RP (ξP ) = P + ξP , RQ(ξQ) = qf(Q+ ξQ).

For these experiments, we randomly generate nonnegative matrices 20× 20 in size by the MAT-
LAB command “A = rand(20)” to provide the desired eigenvalues, singular values, and diagonal
entries, i.e., to solve the DIESP with the specified diagonal entries. We record the final error, as
given by the following formula:

final error = ‖λ(Anew)− λ‖2 + ‖σ(Anew)− σ‖2 + ‖(Anew)it,jt − kt‖2.

After randomly choosing 10 different matrices, Table 4.2 shows our results with the intervals (In-
terval) containing all of the residual values and final errors, and their corresponding average values
(Average). These results provide sufficient evidence that Algorithm 1 can be applied to solve the
DIESP with high accuracy.

Table 4.2
Records of final errors and residual values for solving the DIESP by Algorithm 1.

Interval Average

final errors [7.27× 10−13, 1.21× 10−11] 2.91× 10−12

residual values [7.77× 10−13, 4.93× 10−12] 1.85× 10−12

Although Example 4.2 considers examples with a nonnegative structure, we emphasize that
Algorithm 1 can work with entries that are not limited to being nonnegative. That is, to solve
the IESP without nonnegative constraints but with another specific structure, Algorithm 1 can fit
perfectly well by replacing H(P,Q) in problem (4.1) with

G(S,Q) := Â+ S −QAQ>,

where Â ∈ L1, S ∈ L2 and Q ∈ O(n).

5. Conclusions. In this paper, we apply the Riemannian inexact Newton method to solve an
initially complicated and challenging IESP. We provide a thorough analysis of the entire iterative
processes and show that this algorithm converges globally and quadratically to the desired solution.
We must emphasize that our theoretical discussion and numerical implementations can also be
extended to solve an IESP with a particular structure such as desired diagonal entries and a matrix
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whose entries are nonnegative. This capacity can be observed in our numerical experiments. It
should be emphasized that this research is the first to provide a unified and effective means to solve
the IESP with or without a particular structure.

However, the numerical stability for extremely ill-conditioned problems is a case that we should
pay attention to, though reselecting the initial values could be a strategy to get rid of this difficulty.
Another way to tackle this difficulty is to select a good preconditioner. But, the operator encountered
in our algorithm is nonlinear and high-dimensional. Thus, the selection of the preconditioner could
involve the study of tensor analysis, where further research is needed.

Theoretically determining the sufficient and necessary condition for solving IESPs of any specific
structure, including a stochastic, Toeplitz, or Hankel structure, is challenging and interesting. In the
appendix, we provide the solvability condition of the IESP with real or nonnegative matrices of size
2 × 2 real/nonnegative matrices, while the desired eigenvalues, singular values, and main diagonal
entries are given. We hope that this discussion can motivate a further discussion shortly.

Acknowledgment. The authors wish to thank Prof. Michiel E. Hochstenbach for his highly
valuable comments. They also thank Prof. Zheng-Jian Bai and Dr. Zhi Zhao for helpful discussions.

Appendix A. The solvability of the IESP of a 2× 2 matrix.

For the IESP, the authors in [46] use a geometric argument to investigate a necessary and
sufficient condition for the existence of a 2 × 2 real matrix with prescribed diagonal entries. This
argument also leads to a sufficient algebraic but not necessary condition for the construction of a
2× 2 real matrix. In this appendix, the algebraic condition under which a 2× 2 real matrix or even
nonnegative matrix can be constructed in closed form, given its eigenvalue, singular values, and
main diagonal entries. To do so, we must have the following results. The first result, the so-called
Mirsky condition, provides the classical relationship between the eigenvalues λ = {λ1, . . . , λn} and
the diagonal entries d = {d1, . . . , dn}.

Theorem A.1. [[36], Mirsky condition]. There exists a real matrix A ∈ Rn×n having eigenvalues
λ = {λ1, . . . , λn} and main diagonal entries d = {d1, . . . , dn}, that are possibly in different order, if
and only if

n∑
i=1

λi =

n∑
i=1

di. (A.1)

The second result provides the relationship between the singular values σ and main diagonal
entries d of a 2× 2 nonnegative matrix.

Theorem A.2. [[47], Theorem 2.1]. There exists a nonnegative matrix A =

[
d1 b
c d2

]
∈ R2×2

having the singular values σ1 ≥ σ2 and main diagonal entries d1 ≥ d2, with renumbering if necessary,
if and only if

σ1 + σ2 ≥ d1 + d2, σ1 − σ2 ≥ d1 − d2, if bc− d1d2 ≤ 0, (A.2a)

σ1 − σ2 ≥ d1 + d2, if bc− d1d2 > 0. (A.2b)

In particular, entries from matrix A can be relaxed to real numbers, and condition (A.2) is also
true for the construction of a 2× 2 real matrix. The proof is almost identical to that in [47, Lemma
2.1]. The major change is the substitution of nonnegative entries for real entries. Thus, we skip its
proof here.

Theorem A.3. There exists a real matrix A =

[
d1 b
c d2

]
∈ R2×2 having singular values
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σ1 ≥ σ2 and main diagonal entries d1 ≥ d2, with renumbering if necessary, if and only if

σ1 + σ2 ≥ d1 + d2, σ1 − σ2 ≥ d1 − d2, if bc− d1d2 ≤ 0,

σ1 − σ2 ≥ d1 + d2, if bc− d1d2 > 0.

Now we have the condition of the existence of a 2×2 matrix provided with eigenvalues and main
diagonal entries, or singular values and main diagonal entries. The next theorem, unsolved in [47],
deals with the case in which the three constraints—eigenvalues, singular values, and main diagonal
entries—are of simultaneous concern.

Theorem A.4. There exists a real matrix A =

[
d1 b
c d2

]
∈ R2×2 having eigenvalues |λ1| ≥

|λ2|, singular values σ1 ≥ σ2, and main diagonal entries d1 ≥ d2, with renumbering if necessary, if
and only if

λ1 + λ2 = d1 + d2, σ1 ≥ |λ1|, |λ1λ2| = σ1σ2, (A.4)

and

σ1 + σ2 ≥ d1 + d2, σ1 − σ2 ≥ d1 − d2, if bc− d1d2 ≤ 0, (A.5a)

σ1 − σ2 ≥ d1 + d2, if bc− d1d2 > 0. (A.5b)

Proof. Assume that conditions (A.4) and (A.5) are satisfied. Following from the Weyl-Horn
and Mirsky conditions, we know that for any 2 × 2 matrix, its eigenvalues, singular values, and
diagonal entries must satisfy condition (A.4). Thus, Theorem A.3 implies that once condition (A.5)
is satisfied, it suffices to say that there exists a 2× 2 real matrix.

On the other hand, the sufficient condition follows directly from the Weyl-Horn condition (1.1),
the Mirsky condition (A.1), and Theorem A.3. This completes the proof.

Since the solvability conditions of Theorem A.2 and Theorem A.3 are equivalent, we can see
that the solvability condition in Theorem A.4 can be confined to be the necessary and sufficient
condition for the existence of a nonnegative 2× 2 matrix. We summarize this result as follows.

Corollary A.5. There exists a nonnegative matrix A =

[
d1 b
c d2

]
∈ R2×2 having eigenvalues

|λ1| ≥ |λ2|, singular values σ1 ≥ σ2, and main diagonal entries d1 ≥ d2, with renumbering if
necessary, if and only if

λ1 + λ2 = d1 + d2, σ1 ≥ |λ1|, |λ1λ2| = σ1σ2,

and

σ1 + σ2 ≥ d1 + d2, σ1 − σ2 ≥ d1 − d2, if bc− d1d2 ≤ 0,

σ1 − σ2 ≥ d1 + d2, if bc− d1d2 > 0.

Note that conditions (A.4) and (A.5) cannot be directly generalized to higher dimensional cases.
The authors in [47] present the necessary and sufficient condition of the existence of a real matrix
with a size greater than 2 and having prescribed eigenvalues, singular values, and main diagonal
entries. However, given eigenvalues, singular values, and main diagonal entries, no study has yet
demonstrated the construction of a nonnegative matrix with a size greater than 2×2. This difficulty
can be tackled by the use of our numerical computations.
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